
AD-4157-599 I 'N 4r

IJNCL*S SI]7ED l il"iAMPI u 8F/C 9/2 MI.

1.8

MICROCOPY RESOLUTION TE[ST cHAR I

NATK)NfAt BUlhREAU Of T4NL)Alkf

AD-A157 589

NOTE: This draft, dated 31 January 1985, prepared PROPOSED
by the KAPSE Interface Team and KAPSE Interface MIL-STD-CAIS
Team from Industry and Academia CAIS Working 31 JANUARY 1g9,5
Group for the Ada* Joint Program Offce, has not
been approved and is subject to modlfleatlon.

DO NOT USE PRIOR TO APPROVAL.
(Project IPSC/ECRS 0208)

MILITARY S TANDARD
COMMON APSE INTERFACE SET

(CATS)

IThis d -urrn In- '

*cii.r-12iK AREA ECRS

NO DELrVERABLE DATA REQUIRED BY THIS DOCUMENT

"Ada Is a Re'gimteref
Trademark

of the U.S.Government
(Ada Joint Program

ornee)

N 0 T I C E

THIS DOCUMENT HAS BEEN REPRODUCED FROM THE

BEST COPY FURNISHED US BY THE SPONSORING

AGENCY. ALTHOUGH IT IS RECOGNIZED THAT CER-

TAIN PORTIONS ARE ILLEGIBLE, IT IS BEING RE-

LEASED IN THE INTEREST OF MAKING AVAILABLE

AS MUCH INFORMATION AS POSSIBLE.

UNCLASSIFIED
SEC..,U " CL ASSIVft &'ION 01 TWIS I-AGE e*% b... 1---'d

REPOT DCUMNTATON AGEREAD INSTRUCTIONS
REPRTDOUMNTTIN AG BET-O3RE COMPLETING FORM

R epoll? NUMBLE- 12 GOVT ACCESSION 040-1 3 RECIPIENT'S CATALOG NUMBER

4 ')ILEI land &.60014, 5 TYPE OF REPORT II PERIOD COVERED

Q Military Standard Common Apse Interface Set (GAIS)

Lnfs6 PERFORMING ORG. REPORT NUmBER

r%) AU 7 ORI a, A CONTRACT OR GRANT NUMBER'.,

Ln KAPSE Interface Team:3 o
I PEFkrNRMING OUGANIZATION NAME AND ADDRESS 10 PROGRAM ELEMENT PttO;EC-AS

AREA 6 WORK UNIT NUNI13ERS

11 T Resee
1211 S, .Fzr JL. m. -107 '

S CONTYROLLING OFFICE NAME AND ADDRESS 12 REPORT DATE

Ada Joint Program Office January 1985
3D139 (400 Army Navy) The Pentagon 13 NUMBER OF PAGES
Washington, D.C. 20301 -319

14 MONITORING AGIENCV NAME & ADDRESS.Irt different tram Confrolijnj OII.) 1S SECURITY CLASS (of thso repo"r)

urnclass if ied

IS. DECLASSIFICATION, DOWNGRADING
SC'4EDULE

le DIST RISLTIDN ST A EMENT (of tha e 1port)

Approved for public release; distibution unlinuted

'7 DISTRIBUTIONt STATEMENT (.1 the b~. onI..d 11, 91o0k 20. IIdlfn 'r.. Report)j

Unclassified

It SUPPLEMENTARY NOTES

1 9 KEY WORDS (Coninue on ,oreee Oide it neCosy and Identity by Ilac* number)

Facilitate interoperability and transportability between APSEs. Proposed
policy statement regarding appropriate application of CAIS version 1.

20 ABSTRACT fConirn.. an, reverse old& It noceseery ed Identuity by block hum ber)

This Document has been prepared in response to the Memorandum of Agreement
signed by the Undersecretary of Defense and the Assistant Secretaries
of the Air Force, Army, and Navy. The memorandum established agreement
for defining a set of common interfaces for the Department of Defense (DoDJ
Ada Programming Support Environment (APSEs) to promote Ada tool transportability
and interoperability. The initial interfaces for the CAIS were derived from
the Ada Integrated Environment (MIE) and the Ada Language System (ALS). Since

IDD 1473 9DITION Of I NOV 46 it 045OLITE UNCLASSIFIED
S 'N 0102- LF.014- 6601 *ECURITY CLASSIFICATION OF THInS PAGIE (9Wen ole tote'

INCLASSIMJED
SIECUITY CLaSSorICATIOu or TWIS pa. m'Wu Dn. a-r,

then the CAIS has been expanded to be implementablk as part of a wide variety

of APSEs. It is anticipated that the CAIS wili evolve to meet new needs.

Through the acceptance of this standard, it is anticipated that the source level

portability of Ada software tools will be enhanced for both DoD and non-DoD users.

The authors of this document include technical'representatives from the two

APSE contractors, representatives from the DoD's Kernel Ada Programming Support

Environment (KAPSE) Interface Team (KIT), and volunteer representatives from
the

KAPSE Interface Team from Industry and Academia (KITIA).

The initial effort for definition of the CAIS was begun in September,1982.

This report should be processed. The con-
trolling office is seeking Comments from
interested parties who use it. It is a pro-

posed standard.
Per Mr. Burton Newlin, Ada Joint Program

Office 5~~f ~~ Q

i$sN o16o. IF. eld. eol LINC L A SSIFl

SECURITY CLASSIFICATION OF TNIS PAG@LW
Rb

DOI Stse

OFFICE OF THE UNDER SECRETARY OF DEFENSE

WASHINGTON DC 20301

31 JANUARY 1985

RESEARCH AND

ENGINEERING

R AT)

Dear CAIS Reviewer:

The Common APSE Interface Set (CAIS) has been developed to
facilitate interoperability and transportability between APSEs.
Its development was directed by a January 3, 1982 Memorandum of
Agreement between the three Services and the Deputy Under
Secretary of Defense for Research and Engineering (Acquisition
Management). In that memorandum, the Services agreed to
establish a set of interfaces upon which formal coordination as a
military standard could begin. However, the CAIS is new and
there is very little experience with it as yet. Therefore, its
establishment as a military standard must be accompanied by a
clear statement of the policy regarding its application to
projects and contracts.

The attached is a proposed policy statement regarding
appropriate application of CAIS Version 1 once it is approved as
a military standard. The community at large has expressed a
great deal of concern over the potential for misapplication of
this interface set when it becomes a military standard.
Therefore, we are submitting this draft policy statement for your
review in addition to the MIL-STD-CAIS document itself. It is
requested that you use the same comment procedures for returning
feedback on this draft policy statement as for the CAIS document
itself.

Robert F. Mathis
Director
STARS Joint Program Office

Attachment

PROPOSED CAIS POLICIES

1. Objective: The objective behind the creation of the Common
APSE Interface Set (CAIS) is to promote the portability of
tools and data between APSEs. The CAIS has been formulated
to provide those interfaces most commonly required by tools
in the course of their normal operations. When the CAIS has
matured to the point of wide acceptance by industry, the DoD
will move to apply this standard to the DoD-funded
environments.

2. Purpose: This set of interfaces is being issued as a
military standard in order to allow its application to
government contracts. The principal purpose of such
application is to allow contracts to specify the use of the
CAIS in experimental implementations whose objective is to
learn about the viability, feasibility, implementability and
usability of the interface set as a component of a
programming support environment. Implementations of this
proposed interface set should provide knowledge about
implementation of its features and feedback to the CAIS
designers relevant to the development of Version 2 of the
CAIS.

3. Proper Uses: Proper applications of this standard to
contracts include: (1) prototype implementations of the
interface set, either wholly or in part; (2) prototype
implementations of tools written to run on top of a CAIS
implementation; (3) implementation/comparison studies
designed for such purposes as determining the probable ease
of implementing the CAIS on a new operating system or bare
machine or comparing the features available in the CAIS with
those considered essential in another operating system; and
(4) experimental studies designed to utilize a prototype
CAIS and/or tool implementation in order to gather
information regarding performance, usability, viability,
etc.

4. Improper Uses: It is not intended that the CAIS Version 1
military standard be imposed on any development or
maintenance project whose primary purpose is not explicitly
to experiment with its implementation or that would be
unnecessarily risking total project success on the
(unproven) viability of the current CAIS. The CAIS should
not be imposed nonchalantly or arbitrarily or without a
clear understanding of the potential costs and risks
involved.

S. Feedback: All uses made of the CAIS should require at least
one report intended to provide feedback to the CAIS
designers regarding the pros and cons of its implementation
and use, ease or difficulty encountered with particular
features, and suggestions for improvements to either the
form or technical content of the military standard document.

NOTE: This draft, dated 31 January 1985, prepared PROPOSED
by the KAPSE Interface Team and KAPSE Interface MIL-STD-CAIS

Team from Industry and Academia CAIS Working 31 JANUAJY 198
Group for the Ada* Joint Program Office. has not
been approved and Is subject to modlncation.

DO NOT USE PRIOR TO APPROVAL.
(Project IPSC/ECRS 0208)

MILITARY STANDARD
COMMON APSE INTERFACE SET

(CATS)

AREA ECRS

NO DELIVERABLE DATA REQUIRED BY THIS DOCUMENT

4Ada Is a Registered Tradcmark or the U.S.Government (Ada Joint Program Office)

PROPOSD fLS-TD-CAIS

31 JANUARY 198s

DEPARTMENT or DEFENSE

Washington, DC 20302

Common APSE Interface Set

Mfi-STD-

1. This Military Standard is approved for use by all Departments and Agencies or the
Department of Defense.

2. Beneficial comments (recommendations, additions, deletions) and any pertinent data which
may be of use In improving this document should be addressed to KIT/KITIA CAIS
Working Group and sent to Patricia Oberndorf, Naval Ocean Systems Center, Code 423.
San Diego, CA, 92152-5000 by using the self addressed Standardization Document

Improvement Proposal (DD Form 1426) appearing at the end of this document or by letter.

I-

'Cd

PROPO'41) M1L,,TD-C(AIS

31 JANt AR') 199,

FOR'EWORD

This document has been prepared in response to the Memorandum or Agreement signed by the
Undersecretary of Defense and the Assistant Secretaries of the Air Force, Army, and Navy. The
memorandum established agreement for defining a set or common Interfaces for the Department or
Defense (DoD) Ada Programming Support Environment (APSEs) to prcmote Ada tool transportability
and Interoperability. The Initial Interfaces for the CAIS were derived from the Ada Integrated
Environment (AE) and the Ada Language System (ALS). Since then the CAIS has been expanded to
be Implementable as part or a wide variety of APSEs. It is anticipated that the CAIS will evolve to
meet new needs. Through the acceptance or this standard, It is anticipated that the source level
portability or Ada software tools will be enhanced for both DoD and non-DoD users.

The authors of this document include technical representatives from the two DoD APSE contractors.
representatives from the DoD's Kernel Ada Programming Support Environment (KAPSE) Interface
Team (KIT), and volunteer representatives from the KAPSE Interface Team from Industry and
Academia (KITIA).

The Initial effort for definition of the CAIS was begun In September 1982 by the following members of
the KAPSE Interface Team (KIT): J. Foidl (TRW), J. Kramer (Institute for Defense Analyses),
P. Oberndorf (Naval Ocean Systems Center), T. Tart (Intermetrics), R. Thall (SofTech) and
W. Wilder (NAVSEA PMS-408). In February 1983 the design team was expanded to Include LCDR

B. Schaar (Ada Joint Program Office), T.Harrison (Texas Instruments) and KAPSE Interface Team
from Industry and Academia (KITLA) members: H. Fischer (Litton Data Systems), E. Lamb (Bell
Labs), T. Lyons (Software Sciences Ltd.. U.K.), D. McGonagle (General Electric), H. Morse (Frey
Federal Systems), E. Ploedereder (Tartan Laboratories), H. Willman (Raytheon), and L. Yelowitz
(Ford Aerospace). During 1984, the following people assisted in preparation of this document: F. Belz
(TRW) and the TRW prototype team, K. Connolly (TRW), S. Ferdman (Data General), G. Fitch
(Intermetrics), R. Gouw (TRW), B. Grant (Intermetrics), N. Lee (Institute for Defense Analyses),
J. Long (TRW). and R. Robinson (Institute for Defense Analyses). Additional constructive criticism

and direction was provided by G. Myers (Naval Ocean Systems Center), 0. Roubine (Informatique
Internationale), and the general memberships of the KIT and KITIA, as well as many Independent
reviewers. The Ada Joint Program Office is particularly grateful to these KITIA members and their
companies for providing the time and resources that significantly contributed to this document.

This document was prepared with the Unilogic Ltd. SCRIBE typeset tool on the TRW Software

Productivity Project development environment.

PROPOSED IIL-STI-.-Ad

31 JANUARY 1085

FOREWORD

This document has been prepared in response to the Memorandum or Agreement signed by the
Undersecretary of Defense and the Asistant Secretaries of the Air Force, Army, and Navy. The
memorandum established agreement for defining a set of common Interfaces for the Department of

Defense (DoD) Ada Programming Support Environment (APSEs) to promote Ada tool transportability
and Introperability. The Initial interfaces for the CAIS were derived from the Ada Integrated

Environment (AME) and the Ada Language System (ALS). Since then the CAIS has been expanded to
be Implementable as part of a wide variety of APSEs. It is anticipated that the CAIS will evolve to
meet new needs. Through the acceptance of this standard, It Is anticipated that the source level
portability of Ada software tools will be enhanced for both DoD and non-DoD users.

The authors of this document include technical representatives from the two DoD APSE contractors,
representatives from the DoD's Kernel Ada Programming Support Environment (KAPSE) Interface
Team (KIT), and volunteer representatives from the KAPSE Interface Team from Industry and
Academia (KITIA).

The Initial effort for definition of the CAIS was begun in September 1982 by the following members of
the KAPSE Interface Team (KIT): J. Foidl (TRW), J. Kramer (Institute for Defense Analyses),

P. Oberndorf (Naval Ocean Systems Center), T. Taft (Intermetrics), R. Thall (SofTech) and

W. Wilder (NAVSEA PMS-408). In February 1983 the design team was expanded to include LCDR
B. Schaar (Ada Joint Program Office), T.Harrison (Texas Instruments) and KAPSE Interface Team
from Industry and Academia (KITIA) members: H. Fischer (Litton Data Systems), E. Lamb (Bell
Labs), T. Lyons (Software Sciences Ltd., U.K.), D. McGonagle (General Electric), H. Morse (Frey

Federal Systems), E. Ploedereder (Tartan Laboratories), H. Willman (Raytheon), and L. Yelowitz
(Ford Aerospace). During 1984. the following people assisted in preparation of this document: F. Belz

(TRW) and the TRW prototype team, K. Connolly (TRW), S. Ferdman (Data General), G. Fitch
(Inermetric"), R. Gouw (TRW), B. Grant (Intermetrics), N. Lee (institute for Defense Analyses),
J. Long (TRW), and R. Robinson (Institute for Defense Analyses). Additional constructive criticism

and direction was provided by G. Myers (Naval Ocean Systems Center), 0. Roubine (Informatique
Internationale). and the general memberships of the KIT and KITIA, as well as many independent

reviewers. The Ada Joint Program Office is particularly grateful to these KITIA members and their
companies for providing the time and resources that significantly contributed to this document.

This document was prepared with the Unilogic Ltd. SCRIBE typeset tool on the TRW Software
Productivity Project development environment.

II -

PROPOSED MI-STD-CAIS

31 JANUARY 198.5

Contents

Paragraph Page

1. SCOPE 1
I. I. Purpose 1

1.2. Content 1

1.3. Excluded and deterred topIcs 2

2. REFERENCED DOCUMENTS 4
2.1. Issues of documents 4

2.2. Other publications 4

3. DEFINITIONS 5
4. GENERAL REQUIREMENTS 11

4.1. Introduction 11
4.2. Method of description 11

4.2.1. Allowable differences 11
4.2.2. Semantic descriptions 12

4.2.3. Typographical conventions 12
4.3. CAIS node model 13

4.3.1. Nodes 13
4.3.2. Processes 13
4.3.3. Input and output 14
4.3.4. Relationships and relations '4

4.3.4.1. Kinds or relationships 15

4.3.4.2. Basic predenned relations 15

4.3.5. Paths and pathnames 17
4.3.6. Attributes 19

4.4. Discretionary and mandatory access control 20
4.4.1. Node access 20
4.4.2. Discretionary access control 21

4.4.2.1. Establishing grantable access rights 21

4.4.2.2. Adopting a role 22
4.4.2.3. Evaluating access rights 23
4.4.2.4. Discretionary access checking 26

4.4.3. Mandatory access control 26
4.4.3.1. Labeling of CAIS nodes 27
4.4.3.2. Labeling of process nodes 28

4.4.3.3. Labeling of non-process nodes 28

4.4.3.4. Labeling of nodes for devices 28
4.4.3.5. Mandatory access checking 29

4.5. Pragmatics 29

4.5.1. Pragmatics for CAIS node model 29

4.5.2. Pragmatics for SEQUENTIAL_ 10 30
4.5.3. Pragmatlcs for DIRECT_1O 30
4.5.4. Pragmatlcs for TEXT 10 30

S. DETAILED REQUIREMENTS 31
5.1. General node management 31

5.1.1. Package NODEDEFINITIONS 31
5.1.2. Package NODEMANAGEMENT 33

III

31 JANI AY 198:,

Contents

Paragraph Page

5.1.2.1. Opening a node handle 38
5.1.2.2. Closing a node handle 39
5.1.2.3. Changing the Intention regarding node handle usage 40
5.1.2.4. Examining the open status of a node handle 41
5.1.2.5. Querying the intention of a node handle 41
5.1.2.6. Querying the kind of a node 41
5.1.2.7. Obtaining the unique primary pathname 42
5.1.2.8. Obtaining the relationship key of a primary relationship 42
5.1.2.9. Obtaining the relation name of a primary relationship 43
5.1.2.10. Obtaining the relationship key or the last relationship traversed 44
5.1.2.11. Obtaining the relation name of the last relationship traversed 44
5.1.2.12. Obtaining a partial pathname 44
5.1.2.13. Obtaining the name of the last relationship In a pathname 45
5.1.2.14. Obtaining the key of the last relationship in a pathname 45
5.1.2.15. Querying the existence of a node 45
5.1.2.18. Querying sameness 46
5.1.2.17. Obtaining an open node handle to the parent node 47
5.1.2.18. Copying a node 48
5.1.2.19. Copying trees 50
5.1.2.20. Renaming the primary relationship of a node 51
5.1.2.21. Deleting the primary relationship to a node 53
5.1.2.22. Deleting the primary relationships of a tree 54
5.1.2.23. Creating secondary relationships 55
5.1.2.24. Deleting secondary relationships 56
5.1.2.25. Node Iteration types and subtypes 57
5.1.2.26. Creating an Iterator over nodes 58
5.1.2.27. Determining Iteration statpas 5
5.1.2.28. Getting the next node in an Iteration 59
5.1.2.29. Setting the current node relationship d0
5.1.2.30. Opening a node handle to the current node. 61

5.1.3. Package ATTRIBUTES 62
5.1.3.1. Creating node attributes 62
5.1.3.2. Creating path attributes 63
5.1.3.3. Deleting node attributes 64
5.1.3.4. Deleting path attributes 65
5.1.3.5. Setting node attributes 66
5.1.3.6. SetLIng path attributes 67
5.1.3.7. Getting node attributes 69
5.1.3.8. Getting path attributes 69
5.1.3.9. Attribute iteration types and subtypes 71
5.1.3.10. Creating an Iterator over node attributes 71
5.1.3.11. Creating an Iterator over relationship attributes 72
5.1.3.12. Determining Iteration status 73
5.1.3.13. Getting the next attribute 73

5.1.4. Package ACCESS_CONTROL 74
5.1.4.1. Subtypes 74

5.1.4.2. Setting access control 74

Iv

descendant (or a node) - Any node "vhlch is reachable from other nodes via primary relationships.

pragmatics - Constraints imposed by an Implementation that are not defined by the syntax or

semantics of the CAIS.

primary relationship - The Initial relationship established from an existing node to a newly created

node during Its creation. The existence of a node is determined by the existence of the primary

relationship of which it is the target.

process - The execution or an Ada program, Including all Its tasks.

process node - A node whose contents represent a CAIS process.

program - LRMJ A program is composed of a number of compilation units, one of which is a

subprogram called the main program.

qualified area - A contiguous group of positions in a form that share a cormmon set of

characteristics.

queue - LJEEE] A list that Is accessed in a first-in. first-out manner.

relation - In the aode model, a class of relationships sharing the same n, ne.

relation name - The string that Identifies a relation.

relationship - In the node model. an edge of the directed graph which emanates from :I s)olirrv node

and terminates at a target node. A relationship is an instance of a relatiotn.

relationship key - The string that distinguishes a relationship from other relationships having the
same relation name and emanating from the same node.

relevant grant items - The Items in values of GRANT attributes of relationships of the relation
ACCESS emanating from the object and pointing at any node representing a role which is an adopted
role of the subject or representing a group, one of whose permanent members Is an adopted role of the

su bjec t.

role - A set of access rights that a subject can acquire.

root process node - The Initial process node created when a u-er logs on to an APSE or when a nek

job Is created via the CREATE JOB Interface.

secondary relationship - An arbitrary connection which Is established between two existing nodes.

security level - [TCSECI The combination of a hierarchical classification and a set of non-

hierarchical categories that represents the sensitivity of Information.

source node - The node from which a relationship emanates.

start position (of a form terminal) - The position of a form Identified by row one, column one.

-U m h mm ImmW m - .

3 JAL .. R) gmT .

latest key - The final part of a key that Is automatically assigned lexicographically following aii
previous keys for the same relation names and initial relationship key character sequence for a given
node.

list- [IEEE i An ordered set of Items of data; In the CAIS, an entity of type LISTTYPE whose value
Is a linearly ordered set of data elements.

list item - A data element In a list.

mandatory access control - See access control.

named item - a list Item which has name associated with It.

named list - a list whose Items are all named.

node - A representation within the CAIS of an ctity relevant to the APSE.

node handle - An Ada object of type NODE TYPE which is used to identify a CAIS node. it is
internal to a process.

non-existing node - A node which has never been created.

object - TCSECI A passive entity that contains or receives information. In the CAIS, any node may
be an object.

obtainable - A node Is obtainable ir it Is created and not deleted.

open node handle - A nodc handle that has been assigned to a particular node.

parent - The source node of a primary relationship; also the target of a relationship of the prederned

relation PARENT.

path - A sequence or relationships connecting one node to another. Starting from a given node, a
path Is followed by traversing a sequence of relationships until the desired node Is reached.

path element - A portion of a pathname representing the traversal of a single relationship: a single

relation name and relationship key pair.

pathnarne - A name for a path consisting of the concatenation of the names of the traversed
relationships in the path In the same order In which they are traversed.

permanent member - A group member whdch Is Intrinsically related to the group via primary
relationships of the predeflned relation PERMANENT_ MEMBER,

position (of a terminal) - A place in an output device in which a single, printable ASCII character
may be graphically dlspla~ed.

potential member - A group member that may dynamically acquire membership in the group;
represented by a node that is the target of a secondary relationship of the predeflned relation
POTINTIAL _ MEMIAR emanating from that group node or from any of that group nodes"
descendants.

., - II i I I I /[J l l II I m l l m . -

#If 'l'('- 41 \2I[-TI, t

element (or a fil,) - A value of the generic data type with which the input and output packa' WA.-
Instantiated: see jIRM for additional information.

end poeition - The position or a form identified by the highest row and column indices of the form

external file - tLRM 14.1.1 - Ada external flne] Values input from the external environment of the
prograi,. or output to the environment, are considered to occupy external fies. An external file can
be anything external to the program that can produce a value to be read or receive a value to he
written.

file - See external file.

file handle - An object of type FILE TYPE which is used Wo Identify an internal file.

file node - A node whose contents are an Ada external file, e.g., a host system file, a device, or a
queue.

form - A form is a two-dimensional matrix of character positions.

group - A collection of nodes representing roles and Identified by a structural node with emanating
relationships of the predefined relations POTENTIAL_ MEMBER and PERMANENTMEMHER
Identifying each of the group's members. A member may be a user top-level node, a node
representing the exe, utable image or a program, or a node representing a group.

illegal identification - A node Identification In which the pathname or the relationship key or
relation name is syntactically Illegal with respect to the syntax defined In Table 1.

inaccesible - The qubject has not (adopted a role which has) been granted the access right of
EXISTENCE to the object.

initiate - To place a program into execution: it the CAZS, this means a process node is created, a
process is created as Its contents, required resources are allocated, and execution is started.

initiated process - The process whose program has been placed Into execution.

initiating process - The process placing a program Into execution.

interface - [DACS] A shared boundary.

internal file - A file which Is Internal to a CAIS process. Such a fie Is Identified by a file handle.

Iterator - A variable which provides the bookkeeping Information necessary for iteration over nodes
(a node Iterator) or attributes (an attribute iterator).

job - A process node tree, spanned by primary relationships, which develops under a root proce ,s
node as other (dependent) processes are Initiated for the user.

key - See relatkcr hip key. The key of a node is the relationship key of the last element of the
node's pathname.

label group (of a miagnetic tape) - One of the following: (1) a volume header and a file header label.
(ii) a file header label, or (111) an end-or-file label.

7

PROPO ED %IL- STD-CA IS

31 JA N Igs

granted by an object to adopters or that role; in the CAIS this is accomplished by establishing a
secondary relationship of the predefined relation ADOPTED ROLE from the process node to the
node representing the role.

adopted role of a process - The access rights associated with the node that is the target of a
relationship of the predefined relation ADOPTED ROLE emanating from the process node or with
any group node one ot whose permanent members is the target of such a relationship.

advance (of an active position) - (I) Scroll or page terminal: Occurs whenever (I) the row number or a
new position Is greater than the row number of the old or (II) the row number of the new position is
the same and the column number of the new position is greater than that or the old. (2) Form
terminal: Occurs whenever the indices of its position are Incremented.

approved access rights - Access rights whose names appear in resulting rights lists of relevant
grant items for which either (1) the necessary right Is null or (ii) the necessary right is an approved

access right.

area qualifier - A designator for the beginning of a qualified area.

attribute - A named value associated with a node or relationship which provides information about
that node or relationship.

closed node handle - A node handle which is not associated with any node.

contents - A fie or process associated with a CAIS node.

couple - To establish a correlation between a queue file and a secondary storage file. If the queue file
is a copy queue file, Its initial contents Is a copy of the secondary storage fle to which It is coupled; It
the queue file is a mimic queue file. its initial contents is a copy of the secondary storage file to which
It is coupled, and elements that are written to the mimic queue file are appended to its coupled file.

current job - The root process node of the tree containing the current process node; represented by
the predefined relation CURRENT JOB.

current node - The node that is currently th, focus or context for the activities of the current
process; represented by the predefined relation CURRENT NODE.

current process - The currently executing process making the call to a CAS operation. Pathnanes
are interpreted In the context of the current process.

current user - The user's top-level node; represented by the secondary relationship of the predefined
relation CURRENT USER.

dependent process - A process other than a root process.

device (WERS1 - A piece of equipment or a mechanism designed to serve a special purpose or perform
a special function.

device name - The keys or a primary relationship or the predefined relation DEVICE.

discretionary access control - See access control.

6 t~k -* kmlalmmlm li

PROPO'-EfD %11."T[-' M,*

31 JANI.kR) IoS.

3. DEFINITIONS

The following is an alphabetical listing of terms which are used In the description of the CAIS. Where
a document named In Section 2 was used to obtain the deflnitlon, the definition Is preceded by a

bracketed reference to that document.

abort - [IEEE! To terminate a process prior to completion.

access - [TCSECI A specific type of Interaction between a subject and an object that results In the
flow of Information from one to the other.

access checking - The operation of checking access rights against those rights required for the
Intended operation, according to the access control rules, and either permitting or denying the
Intended operation.

access control - ITCSECI (i) discretionary access control: A means or restricting access to objects
ba sed on the identity of subjects and/or groups to which they belong. The controls are discretionary
In the sense that a subject with a certain access permission is capable of passing that permission
(perhaps indirectly) on to any other subject. (2) mandatory access control: A means of restricting
access to objects based on the sensitivity (as represented by a label) of the information contained in
the objects and the formal authorization (i.e., clearance) of subjects to access information or such
sensitivity. In the CAIS, this includes specification of access rights, access control rules and checking
of access rights In accordance with these rules.

access control constraints - The resulting restrictions placed on certain kinds of operations by
access control.

access control information - All the Information required to perform access checking.

access control rules - The rules describing the correlations between access rights and those rights
required for an intended operation.

access relationship - A relationship of the predeflned relation ACCESS.

access right. -Descriptions of the kinds of operations which can be performed.

access to a node - Reading or writing of the contents of the node, reading or writing of attributes of
the node, reading or writing of relationships emanating from a node or or their attributes, and
traversing a node as Implied by a pathname.

acc(asible - The subject has (adopted a role which has) been granted the access right EXISTEN('E
to the object.

active position - The position at which a terminal operation Is to be performed.

Ada Programming Support Environment (APSE) - [UK Ada Study, STONEMAN] A set or
hardware and software facilities whose purpose Is to support the development and maintenance of
Ada applications software throughout its life-cycle with particular emphasis on software for embedded
computer application%. The principal features are the database, the Interfaces and the tool set.

adopt a role - The action of a process to acquire the access rights which have been or will be

PROFO',E.D \H'T- ,

2. REFERENCED DOCUMENTS

2.1. Issues of documents

The following documents or the issue in effect on date of Invitation for bids or request for proposal
form a part of this standard to the extent specified herein.

[LRMI: Reference Manual for the Ada Programming Language, ANSI/MIL-STD-1815A; United States
Department of Defense; January 1083.

(Copies or specifications, standards, drawings, and publications required by contractors In connection
with specific procurement functions should be obtained from the procuring activity or as directed by
the contracting officer.)

2.2. Other publications

The following documents form a part of the standard to the extent specified herein. Unless otherwise
Indicated, the issue in effect on date of invitation for bids or request for proposal shall apply.

(ANSI 78j: American National Standards Institute, Magnetic Tape Labels and File Structure for
Iformation Interchange (ANSI Standard z8.27-1978). (Application for copies should be addressed

to American National Standards Institute, Inc., 1430 Broadway, New York, NY 10018)

[DACS]: DACS Glossary, a Bibliography or Software Engineering Terms. GLOS-1, October 1Q79, Data
and Analysis Center for Software. (Application for copies should be addressed to Data and Analysis
Center for Software, R-ADC/ISISI. Griffiss AFB. NY 13441)

[IEEE]: IEEE Standard Glossary of Software Engineering Terminology, ANSI/IEEE Std. 729-1983.
(Application for copies should be addressed to Sales Department, American National Standards
Institute. 1430 Broadway, New York, NY 10018)

(STONEMAN]: Requirements for Ada Programming Support Environments, STONEMAN;
Department of Defense; February 1980.

[TCSECI: Department of Defense Trusted Computer System Evaluation Criteria. Department or
Defense Computer Security Center, CSC-STD-001-83, 15 August 1Q83. (Application for copies should
be addressed to Department of Defense, Computer Security Center, Office of Standards and Products,
Attention: Chief, Computer Security Standards, Fort George G. Meade. Maryland 20755.)

[UK Ada Study]: United Kingdom Ada Study Final Technical Report, Volume 1, London, Department
of Industry, 1981. (Application for copies should be addressed to Scientific Information Office. British
Defence Staff, British Embassy. 3100 Massachusetts Avenue, NW, Washington, D.C. 20008.)

[WEBS]: Webster's New Collegiate Dictionary, G.&C. Merriam Company, Springfield, Ma.sachuetts.
1979.

4

31 ANI &R ipw

used by tool sets to constrain nodes, attributes, and relations, but It does not enforce a

particular methodology. Currently deferred is a decision whether or not the CAIS should

enforce a particular, more complete typing methodology and what kind of CAIS Interfaces

should be made available to support it.

g. Archiving. The current CAIS does not define facilities for archlving data. Currently

deferred is a decision regarding the form that archiving Interfaces should take.

3

PROPOSED NIIL-STD-C.JS

31 JANUARY 1985

b. Processes. This area covers program Invocation and control.

c. Input and Output. This area covers file Input and output, basic device input and output
support, special device control facilities, and interprocess communication.

d. Utilities. This area covers list operations useful for manipulation of parameters and
attribute values.

1.3. Excluded and deferred topics

During the design of the CAIS it was determined that Interfaces for environments which are not
sortware development environments (for example, interfaces on target systems) and interfaces for
multilingual environments should be explicitly excluded. It has been decided that backup facilities
will be supported transparently by the CAIS implementation. While the Interface issues of most
aspects or environments were considered, the complete resolution of several areas has been deferred
until later revisions of the CAIS. These areas are:

a. Configuration management. The current CAIS supports facilities for configuration control
Including keeping versions, referencing the latest revision. Identifying the state of an
object, etc.: but It does not Implement a particular methodology. Currently deferred is the
decision whether or not the CAIS should enforce a particular configuration management
approach and. If so, what particular methodology should be chosen.

b. Device control and resource management. The current CAIS provides control facilities for
scroll, page and form terminals and magnetic tape drives. Currently deferred is the
decision as to what additional devices or resources must be supported by the CAIS. Such
resources and devices might include printers. disk drives, color terminals, vector- and bit-
addressable graphics devices, processor memory, processor time, communication paths, etc.
Also deferred is a decision regarding which other American National Standards Institute or
International Standards Organization interfaces to adopt, such as the ISO/DIS 7942
Graphical Kernel System (GKS).

c. Distributed environments. The existing CAIS p.wckages are Intended to be implementable
on a distributed set of processors, but In a manner that Is transparent to a tool. Currently

deferred Is the decliion whether or not to provide to the user explicit CAIS interfaces to
control the distribution of the environment. Incliiding de-Ignation of where nodes exist and
where execution takes place. Note that a set of distrib|u,d processors could Include one or
more target machines.

d. Inter-tool interfaces. The current CAIS does not define inter-tool calling "equences or data
formats such as the data format within the compilation/program library system, the text
format within editing systems, the command proreeqor language syntax, the message
formats of a mail system, or the Interaction between the run-time system and debugger
tools. Currently deferred are decisions regarding what Inter-tool data should become part
of the standard, what form such Interfaces should take, and whether or not to place
constraints on the run-time system to provide process execution information.

e. Interoperability. The current CAIS provides only a very primitive, text-oriented Interface
for transferring fles between a CAIS Implementation and the operating system on which It
may reside. It does not deflne external representations or data for transfer between
en% ironments or between a host and target.

f. Typing methodology. The current CAIS provides attributes and relations which can be

2

II ~PH()tO()FL.I) L--TI'-' 1-

i 31 JANI R Ak
)

,

1. SCOPE

1.1. Purpos

This document provides specifications for a set of Ada packages, with their intended semantics, which

together form the set of common interfa.es for Ada Programming Support Environments (AP'SI.s).
This set or interfaces Is known as the Common APSE Interface Set (CAJS). This ih'rfracc -4 1 is

designed to promote the source-level poriability or Ada programs, particularly Ada .ofrware

development tools.

The CAIS applies to Ada Programming Support Environments which are to become the basic
sortware lire-cycle environments for Department of Defense (DoD) mission critical computer systems

(MCCS). Those Ada programs that are used in support of sortware development are dcned as tools.

This includes the spectrum of support software from project management through code development,
configuration management and life-cycle support. Tools are not restricted to only those software

Items normally associated with program generation, such as editors, compilers, debuggers, and linker-
loaders. Groups of tools that are composed of a number of independent but interrelated programs

(such as a debugger which is related to a specific compiler) are classed as tool sets' .

Since the goal of the CAIS Is to promote it teroperability and transportability or Ada sortware across

DoD APSEs, the rollowing definitions of these terms are provided.

Interopfrability is defined as the ability of APSEs to exchange data base objects and their

relationships in forms usable by tools and user programs without conversion. Transportability of
an APSE tool is defined as the ability of the tool to be installed on a different KAPSE; the tool

must perform with the same functionality in both APSEs. Transportability Is measured In the
degree to which this Installation can be accomplished without reprogramming. Portability and

transferability are commonly used synonyms.
2

The CAIS Is Intended to evolve as APSEs are Implemented, as tools are transported. and as tool

Interoperability issues are encountered. Tools written in Ada. using only the packages described

herein, should be transportable between CAJS implementations. Where tools function as a set. the
CAIS facilitates transportability of the tool set as a whole: tools might not be individually

transportable becati -e they depend on Inputs from other tools In the set.

1.2. Content

The CAIS establishes Interface requirements for the transportability of Ada tool sets to be used in
Department of Defense (DoD) APSEs. Strict adherence to this Interface set will ensure that Ada tool

sets will possess the highest degree of transportability across conforming APSFS.

The scope of the CAIS includes Interfaces to those services, traditionally provided by an operating
system, that affect tool transportability. Ideally, all APSE tools would be Implementable using only

the Ada language and the CAIS. The CAIS Is Intended to provide the transportability interfaces
most often required by common software development tools and includes four interface areas:

a. Node Model. This area presents a model for the CAJS In whIch contents, relationships and
attributes of nodes are defined. Also included are the foundations for access control and

access synchronization.

IReq.ire.ep.-e for .4dn Pogrnmring Support Enviroynerita. STONE.fA: Depari ,nnt of Defrenr: Fhriixr 19110.

K.-ItsP I.;terfa're T.,,m: PAtblie Report. Volunse 1. I Apri IOA2: p. CI.

PROPOSED MILSTD-CAS

31 JANUARY 19.%

Contents

Paragraph Page

5.4.1.22.2 Extracting a floating point Item from a list 210
5.4.1.22.3 Replacing a floating point item Into a list 211
5.4.1.22.4 Inserting a floating point Item Into a list 212
5.4.1.22.5 Identifying a floating point item by value within a list 212

5.4.1.23. Package STRINGITEM 213
5.4.1.23.1 Extracting a string Item from a list 213
5.4.1.23.2 Replacing a string Item in a list 214
5.4.1.23.3 Inserting a string item Into a list 214
5.4.1.23.4 Identifying a string Item by value within a list 215

6. NOTES 217
6.1. Keywords 217

Tables

Table I. Pathname BNF 19
Table iI. GRANT attribute value BNF 23
Table M. Predefined access rights 24
Table IV. Classification attribute value BNF 28
Table V. Intents 33
Table VI. Process status transition table 81
Table VII. Created and Inherited relationships 82
Table VIII. Input and output packages for file kinds 101
Table IX, File node predefnned attributes, attribute values and relation 103
Table X Modes and Intents 103
Table X. Volume header label 184
Table XII. File header label 186
Table XI. End of ilue label 187
Table XIV. List external representation BNF 192

Figures

Figure 1. Access relationships 24
Figure 2. Matrix of access synchronization constralnts 37

Appendix A. PREDEFINED RELATIONS, ATTRIBUTES AND 218
ATTRIBUTE VALUES

Appendix B. CAIS Specification 222

Appendix C. CAIS Body 249

Appendix D. PACKAGE LISTING OF CAIS PROCEDURES AND 298

FUNCTIONS

Ix

PROPOSED NilL-STD-(AIS

31 JANUARY 1985

Contents

Paragraph Page
5.3.9.12. Rewinding the tape 182
5.3.9.13. Skipping tape marks 182
5.3.9.14. Writing a tape mark 183
5.3.9.15. Writing a volume header label 183
5.3.9.16. Writing a file header label 185
5.3.9.17. Writing an end of file label 187
5.3.9.18. Reading a label on a labeled tape 188

5.3.10. Package FILE IMPORTEXPORT 189
5.3.10.1. Importing a file 189
5.3.10.2. Exporting a file 190

5.4. CAIS Utilities 191
5.4.1. Package LISTUTILITIES 193

5.4.1.1. Types and subtypes 193
5.4.1.2. Copying a list 194
5.4.1.3. Converting to an Internal list representation 194
5.4.1.4. Converting to an external list representation 195
5.4.1.5. Determining the equality of two lists 195
5.4.1.6. Deleting an item from a list 195
5.4.1.7. Determining the kind of list 196
5.4.1.8. Determining the kind or list Item 196
5.4.1.9. Inserting a sublist of items into a list 197
5.4.1.10. Merging two lists 197
5.4.1.11. Extracting a sublist of items from a list 198
5.4.1.12. Determining the length of a list 198
5.4.1.13. Determining the length of a string representing a list or a list item 18
5.4.1.14. Determining the name of a named Item 199
5.4.1.15. Determining the position of a named item 200
5.4.1.16. Extracting a list-type item from a list 200
5.4.1.17. Replacing a list-type Item in a list 201
5.4.1.18. Inserting a list-type item into a list 202
5.4.1.19. Identifying a list-type item by value within a list 202
5.4.1.20. Package IDENTIFIERITEM 203

5.4.1.20.1 Converting an identifier to a token 203
5.4.1.20.2 Converting a token to an Identifier 204
5.4.1.20.3 Determining the equality of two tokens 204
5.4.1.20.4 Extracting an identifier item from a list 204
5.4.1.20.5 Replacing an identifier item In a list 205
5.4.1.20.6 Inserting an Identifier Item into a list 206
5.4.1.20.7 Identifying an identifier item by value within a list 206

5.4.1.21. Generic package INTEGERITEM 207
5.4.1.21.1 Converting an integer item to Its canonical external representation 207
5.4.1.21.2 Extracting an integer item from a list 207
5.4.1.21.3 Replacing an Integer Item In a list 208
5.4.1.21.4 Inserting an integer Item into a list 209
5.4.1.21.5 Identifying an Integer Item by value within a list 209

5.4.1.22. Generic package FLOATITEM 210
5.4.1.22.1 Converting a floating point Item to Its canonical external 210

representation

viii

PROPOSED MIL-STD-CAIS

31 JANU ARY 1985

Contents

Paragraph Page
5.3.7.10. Enabling echo on a terminal 152
5.3.7.11. Querying echo on a terminal 153
5.3.7.12. Determining the number of function keys 153
5.3.7.13. Reading a character frcm a terminal 154
5.3.7.14. Reading all available characters from a terminal 155
5.3.7.15. Determining the number of function keys that were read 156
5.3.7.16. Determining function key usage 156
5.3.7.17. Determining the name of a function key 157
5.3.7.18. Deleting characters 158
5.3.7.19. Deleting lines 159
5.3.7.20. Erasing characters In a line 160

5.3.7.21. Erasing characters In a display 180
5.3.7.22. Erasing characters In a line 161
5.3.7.23. Inserting space characters In a line 162
5.3.7.24. Inserting blank lines In the output terminal file 163
5.3.7.25. Determining graphic rendition support 164
5.3.7.26. Selecting the graphic rendition 164

5.3.8. Package FORMTERMINAL 165
5.3.8.1. Types and subtypes 166
5.3.8.2. Determining the number of function keys 167
5.3.8.3. Deflning a quajified area 167
5.3.8.4. Removing an area qualifier 168
5.3.8.5. Changing the active position 168
5.3.8.6. Moving to the next qualified area 169
5.3.8.7. Writing to a form 169
5.3.8.8. Erasing a qualified area 170
5.3.8.9. Erasing a form 170
5.3.8.10. Activating a form on a terminal 170
5.3.8.11. Reading from a form 171
5.3.8.12. Determining changes to a form 171
5.3.8.13. Determining the termination key 172
5.3.8.14. Determining the size of a form 172
5.3.8.15. Determining the size of a terminal 172
5.3.8.16. Determining If the area qualifier requires space in the form 173
5.3.8.17. Determining If the area qualifier requires space on a terminal 173

5.3.9. Package MAGNETIC TAPE 174
5.3.9.1. Types and subtypes 175
5.3.9.2. Mounting a tape 175
5.3.9.3. Loading an unlabeled tape 176
5.3.9.4. Initializing an unlabeled tape 177
5.3.9.5. Loading a labeled tape 177
5.3.9.6. Initializing a labeled tape 178
5.3.9.7. Unloading a tape 179
5.3.9.8. Dismounting a tape 130
5.3.9.9. Determining if the tape drive is loaded 180
5.3.9.10. Determining if a tape is mounted 181
5.3.9.11. Determining the position of the tape 181

vii

PROPOSED MIL-STD-C.At-

31 JANUt4RY 198.5

Contents

Paragraph Page
5.3.4.10. Setting the error file 119
5.3.4.11. Determining the standard error file 120
5.3.4.12. Determining the current error file 120

5.3.5. Package 1O CONTROL 120
5.3.5.". Obtaining an open node handle from a file handle 121
5.3.5.2. Synchronizing program files with system flies 122
5.3.5.3. Establishing a log file 122
5.3.5.4. Removing a log file 123
5.3.5.5. Determining whether logging is specified 123
5.3.5.6. Determining the log file 123
5.3.5.7. Determining the file size 124
5.3.5.8. Setting the prompt string 124
5.3.5.9. Determining the prompt string 125
5.3.5.10. Determining intercepted characters 125
5.3.5.11. Enabling and disabling function key usage 126
5.3.5.12. Determining function key usage 126
5.3.5.13. Creating a queue file node 127

5.3.6. Package SCROLLTERMINAL 130
5.3.6.1. Suttypes 130
5.3.8.2. Setting the active position 130
5.3.6.3. Determining the active position 131
5.3.6.4. Determining the size of the terminal 132
5.3.6.5. Setting a tab stop 133
5.3.6.6. Clearing a tab stop 133
5.3.6.7. Advancing to the next tab position 134
5.3.6.8. Sounding a terminal bell 135
5.3.6.9. Writing to the terminal 136
5.3.8.10. Enabling echo on a terminal 137
5.3.6.11. Querying echo on a terminal 138
5.3.6.12. Determining the number of function keys 138
5.3.8.13. Reading a character from a terminal 139
5.3.6.14. Reading all available characters from a terminal 140
5.3.8.15. Determining the number of function keys that were read 141
5.3.6.16. Determining function key usage 141
5.3.6.17. Determining the name of a function key 142
5.3.6.18. Advancing the active position to the next line 143
5.3.6.19. Advancing the active position to the next page 144

5.3.7. Package PAGETERMINAL 144
5.3.7.1. Types, subtypes and constants 145
5.3.7.2. Setting the active position 145
5.3.7.3. Deterninlng the active position 146
5.3.7.4. Determining the size of the terminal 147

5.3.7.5. Setting a tab stop 148
5.3.7.6. Clearing a tab stop 148
5.3.7.7. Advancing to the next tab position 149
5.3.7.8. Sounding a terminal bell 150
5.3.7.9. Writing to the terminal 151

A

PROPOSED MIL-STD-C-US

31 JANUARY 1W85

Contents

Paragraph Page

5.1.4.3. Examining access rights 75
5.1.4.4. Adopting a role 76
5.1.4.5. Unlinking an adopted role 77

5.1.5. Package STRUCTURAL NODES 77

5.1.5.1. Creating structural nodes 77

5.2. CAIS process nodes 79

5.2.1. Package PROCESS DEFINITIONS 81
5.2.2. Package PROCESS CONTROL 82

5.2.2.1. Spawning a process 83
5.2.2.2. Awaiting termination or abortion of another process 85
5.2.2.3. Invoking a new process 85
5.2.2.4. Creating a new Job HS

5.2.2.5. Appending results 90
5.2.2.6. Overwriting results 90

5.2.2.7. Getting results from a process 90
5.2.2.8. Determining the status of a process 92
5.2.2.9. Getting the parameter list 92

5.2.2.10. Aborting a process 93
5.2.2.11. Suspending a process 94

5.2.2.12. Resuming a process 95
5.2.2.13. Determining the number or open node handles 96

5.2.2.14. Determining the number of Input and output units used 97
5.2.2.15. Determining the time of activation 98
5.2.2.16. Determining the time of termination or abortion 99
5.2.2.17. Determining the time a process has been active 100

5.3. CAIS input and output 100
5.3.1. Package IODEFINITIONS 104

5.3.2. Package DIRECT_10 104
5.3.2.1. Subtypes and constants 104
5.3.2.2. Creating a direct input or output file 105
5.3.2.3. Opening a direct input or output file 107
5.3.2.4. Deleting a direct Input or output file 108

5.3.3. Package SEQUENTIAL_10 109
5.3.3.1. Subtypes and constants 100

5.3.3.2. Creating a sequential Input or output file 109
5.3.3.3. Opening a sequential input or output file III
5.3.3.4. Deieting a sequential Input or output file 112

5.3.4. Package TEXT 10 113
5.3.4.1. Subtypes and constants 113
5.3.4.2. Creating a text Input or output file 113
5.3.4.3. Opening a text input or output file 115
5.3.4.4. Deleting a text input or output file 118
5.3.4.5. Resetting a text file 117
5.3.4.6. Reading from a text file 117
5.3.4.7. Writing to a text file 118

5.3.4.8. Setting the Input file 118
5.3.4.9. Setting the output file 119

V

PROPOSEV MIL-ST-C.AIS

31 JANUARY 19M

structural node - A node without contents. Structural nodes are used strictly as holders of
relationships and attributes.

subject - JTCSEC] An active entity, generally in the form of a person, process, or device, that causes
information to flow among objects or changes the system state. In the CAIS, a subject Is always a
process.

system-level node - The root or the CAIS primary relationship tree which spans the entire node
structure.

target node - The node at which a relationship terminates.

task - (LRMI A task operates In parallel with other parts or the program.

termination of a proces - Termination (see [LRMJ 9.4) of the execution of the subprogram which
is the main program (see [LRM) 10.1) of the process.

token - An internal representation of an Identifier which can be manipnlated as a list Item.

tool - [IEEE - software tool] A computer program used to help develop, test, analyze, or maintain
another computer program or its documentation; for example, an automated design tool, compiler,
test tool, or maintenance tool.

top-level node - A structural node representing the user. Each user has a top-level node.

track - (I) An open node handle Is guaranteed always to refer to the same node, regardless or any
changes to relationships that could cause pathnames to become Invalid or to refer to different, nodes.
An open node handle is said to track the node to which it refers. (2) Secondary relationships.

traversal of a node - Traversal of a relationship emanating from the node.

traversal of a relationship - The act of following a relationship from its source node to its target
node.

unique primary path - The path from the system-level node to a given node traversing only
primary relationships. Every node that is not unobtainable has a unique primary path.

unique primary pathname - The pathname associated with the unique primary path.

unnamed item - No name is associated with a list Item.

unnamed list - A list whose Items are all unnamed.

unobtainable - A node Is unobtainable If It is not the target of any primary relationship.

user -An Individual, project, or other organizational entity. In the CAIS it Is amsociated with a op-
level node.

user name -The key of a primary relationship of the prederined relation USER.

10

PROPO'ED MII, TTD-(Al-

31 J4N .R% 1985W

4. GENERAL REQUTREMENTS

4.1. Introduction

The CAIS provides interfaces for data storage and retrieval, data transmission to and from external

devices, and activation or programs and control of their execution. In order to achieve uniformity in

the Interfaces, a single model is used to consistently describe general data storage, devices and

executing programs. This approach provides a single model for understanding the CAIS concepts: it

provides a uniform understanding of and emphasis on data storage and program cont.'ol; and it

provides a consistent way of expressing interrelations both within and between data and executing

programs. This unified model is referred to as the node model.

Section 4.2 discusses how the Interfaces are described in the remainder of Section 4 and in Section 5.

Section 4.3 describes the node model. Section 4.4 describes the mandatory and discretionary access

control model Incorporated In the CAIS. Section 4.5 describes limits and constraints not defined by

the interfaces. Section 5 provides detailed descriptions of the interfaces. Section 6 provides

information on the intended use of this document and relevant keywords for use by automated

document retrieval systems.

Appendix A provides descriptions of the entities predefined in the CAIS. This appendix constitutes a

mandatory part of this standard.

Appendix B provides a set of the Ada package specifications which have been organized for

compilation of the CAIS interfaces. Appendix C provides a set of the corresponding Ada package

bodies. Appendix D provides a list of all CAIS procedures and functions organized by the packages in

which they appear.

4.2. Method of description

The specifications of the CAIS Interfaces are divided into two parts:

a. the syntax as defined by a canonical Ada package specification, and

b. the semantics as defined by the descriptions both of the general node model and of the

particular packages and procedures.

The Ada package specifications given In this document are te,-med canonical because they are

representative of the form of the allowable actual Ada package sp.cifications in any particular CAIS
Implementation. The packages which together provide an implemeittation of these specifications must

have Indistinguishable syntax and semantics from those stated herein.

4.2.1. Allowable differences

The packages which together provide a particular Implementation of the CAIS must have the
following properties:

a. Any Ada program that Is legal and not erroneous In the presence of the canonical package

specifications as library units must be legal and not erroneous If the canonical packages are

replaced by the packages of a particular CAIS Implementation and the names of additional

library units required for the Implementation of this particular CAIS are not in conflict

with the names of library units required by the Ada program. [Note: It is recommended,

II

PROPOSED fIL-STD-CAiS

31 JANUARY 1985

although not required, that any Ada program that Is Illegal in the presence of the

canonical package specifications as library units Is also Illegal If the canonical packages are

replaced by the packages of a particular CAIS Implementation.]

b. The CAIS Interfaces provided by the subprograms declared In the packages of a particular

CAIS Implementation must have the semantics described In this document for the

corresponding subprograms In the canonical package specifications.

The actual Ada package specifications of a particular Implementation may ditfer from the canonical

specifications as long as properties (a) and (b) are preserved.

4.2.2. Semantic dewriptions

The interface semantics are described In most cases through narrative. These narratives are divided

Into as many as five paragraphs. The Purpose paragraph describes the function or the interface. The

Parameters paragraph briefly describes each of the parameters, and the Exceptions paragraph briefly

describes the conditions under which each exception is raised. Any relevant Information that does not
fall under one or these three headings is included in a Notes paragraph. In cases where an interface is

overloaded and the additional versions can be described In terms of the basic form of the interrace

and other CAIS Interfaccs, these versions are described In a paragraph, called Additional Interfaces,

using Ada. Thls method of presenting the semantics of the Additional Interfaces is a conceptual

model. It does not Imply that the Additional Interfaces must be Implemented In terms or the existing

ones exactly as specified, merely that their behavior Is equivalent to such an Implementation. The

semantics described In the Purpose, Parameters and Exceptions apply only to the principal interface;

the Additional Interfaces may have additional semantics as Implied by the given package bodies.

4.2.3. Typographical conventions

This document rollows the typographical conventions of [LRM] where these are not in conflict with
those of a MIL,-STD. In particular:

a. boldface type is used for Ada language reserved words,

b. UPPER CASE Is used for Ada language Identifiers which are not reserved words,

c. In the text, syntactic category names are written in normal typeface with any embedded

underscores removed.

d. in the text, where reference Is made to the actual value of an Ada variable (for example, a
procedure parameter), the Ada name Is used In normal typerace. However, where

reference Is made to the Ada object Itself (see [LRMj 3.2 for this use of the word object),
then the Ada name Is given in upper case, Including any embedded underscores. For

example, rrom [LRMJ 14.2.1 paragraphs 17, 13 and 19

function MODE(FILE: in FILETYPE) return FILEMODE;

Returns the current mode of the given file.

but

The exception STATUSERROR Is raised If the file

Is not open.

12

PROPOSED Wl-STr)-(.1
31 JA VARY 199%

e. at the place where a technical term is first Introduced and defined In the text, the term is

given in an italic typeface.

4.3. CAIS node model

The CAIS provides Interfaces for administrlng entities relevant during the software life-cycle such as
files, directories, processes and devices. These entitles have various properties and may have a variety
of interrelations. The CAIS model uses the concept of a node as the carrier of information about an
entity. It uses the concept of a relationship for representing an interrelation between two entities

and the concept of an attribute for representing a property of an entity or of an Interrelation.

The model of the structure underlying the CAIS and reflecting the Interrelations or entities is a
directed graph or nodes, which form the vertices of the graph, and relationships, which form the edges
of the graph. This model is a conceptual model. It does not Imply that an Implementation or the
CAIS must use a directed graph to represent nodes and their relationships.

Both nodes and relationships possess attributes describing properties of the entities represented by
nodes and of Interrelations represented by relationships.

4.3.1. Nodes

The CAIS identifies three different kinds of nodes: structural nodes, file nodes and process nodes. A
node may have contents, relationships and attributes. The contents vary with the kind or node. If a
node is a file node, the contents is an Ada external file. There are four types or CAIS supported Ada
external files: secondary storage, queue, terminal, and magnetic tape. The Ada external file may
represent a host file. a device (such a- a terminal or tape drive) or a queue (as used for process

Intercommunication). If a node is a proress node, the contents is a representation of the execution or
an Ada program. If a node is a structural node, there is no contents and the node Is used strictly as a
holder of relationships and attributes. The kind of a node Is a predefined and implicitly established
attribute on every relationship which points to the node.

Nodes can be created, renamed, accessed (as part of other operations), and deleted.

4.3.2. Processes

A process Is the CAIS mechanism used to represent the execution of an Ada program. A process is
represented as the contents of a process node. The process node and Its attributes and relationships

are also used to bind to an execution the resources (such as flies and devices) required by the process.

Taken together, the process node. its attributes, relationships and contents are used in the CAIS to
manage the dynamics of the execution of a program. Each time execution of a program is initiated, a
process node Is created, the process Is created, the necessary resources to support the execution of the
program are allocated to the process, and execution Is started. The newly created process is called
the initiated process, while the process which caused the creation of that process Is called the
initiating process.

A single CAIS procc-, represents the execution of a single Ada program, even when that program
Includes multiple tasks. Within the process, Ada tasks execute In parallel (proceed Independently)

and synchronize In aceordance with the rules In [LRM 9, paragraph 5:

Parallel tasks may be Implemented on multlcompuers, multiprocessors, or with interleaved
execution on a single physical processor. On the other hand, whenever an Implementation can

13

PROPOSED, MIL-STD-CAI

31 JANtAR) 19#.i

detect that the same effect can be guaranteed if parts of the actions or a given [Ada t.&k are

executed by different physical processors acting in parallel, it may choose to execute them in this

way; in such a case several physical processors implement a single logical processor.

When a task makes a CAIS call, execution or that task is blocked until the CAIS call returns control
to the task. Other tasks In the same process may continue to execute in parallel, subject to the Ada

tasking rules. If calls on CAIS Interfaces are enacted concurrently, the CAJS does not specify their

order or execution.

Processes are analogous to Ada tasks In that they execute logically in parallel, have mechanisms for

Interprocess synchronization, and can exchange data with other processes. However, processes and

Ada tasks are dissimilar In certain critical ways. Data, procedures or tasks In one process cannot be

directly referenced from another process. Also, while tasks In a program are bound together prior to

execution time (at compile or link time), processes are not bound together except by cooperation using
CAIS facilities at run time.

4.3.3. Input and output

Ada Input and output In [LRM] 14 Involves the transfer of data to and from Ada external files. CAlS

Input and output uses the same model and Involves the transfer of data to and from the contents of

CAIS file nodes. These file nodes may represent disk or other secondary storage files, magnetic tape
drives, terminals, or queues.

CAIS file nodes represent information about and contain Ada external files. The underlying model for
the contents of such a node is that of a file of data Items, accessible either sequentially or directly by

some Index. The packages specified In Section 5.3 provide facilities that operate on CAIS external
files.

Implementations of the standard Ada packages SEQUENTIAL_ 10, DIRECT_ 10, and TEXT 10
specified in the [LRM] that operate upon CAS files are to be constructed such that they meet the

Ada standard and for CRIEATE and OPEN procedures:

I. The semantics of th use of the default value of the FORM parameter FORM : IN string
:-= "" Is specified within the context of the node model.

2. The syntax and semantics of the non empty FORM parameter Is specified within the
context of the NODE model.

3. Nothing In the Implementation can violate the concistancy of the CAIS NODE model.

The interfaces in the package MAGNETICTAPE have been modeled on the American National
Standards Institute standards In [ANSI 78].

4.3.4. Relationships and relations

The relationships of CAIS nodes form the ed,",,s of a directed graph; they are used to build
conventional hierarchical directory and process structures (see Section 5.1.5 STRUCTURAL NODES

and Section 5.2.2 PROCESS _ CONTROL) .s well as arbitrary directed-graph structures.

Relationships are unidirectional and are said to emanate from a source node and to terminate at a
target node. A relationship may also have attributes describing properties of the relationship.

Becauise any node may have many relationships representing many different clas ses of connections,

14

PROF1.)'.1: NII,1T1)-" .AI

31 J.IAtAR) 14,

the concept of a relation Is Introduced to categorize the relationships. Relations identify the nature
of relationships, and relationships are Instances or relations. Certain basic relations are predeflned by
the CAIS. Their semantics are explained in the following sections. Additional predefined relations are
Introduced In Section 5 and are listed in Appendix A. Relations may also be defined by a user. The
CAIS associates only the relation name with user-denned relations; no other semantics are supported.

Each relationship Is Identified by a relation name and a relationship key. The relation narnf
Identifies the relation, and the relationship key distinguishes between multiple rclationships each
bearing the same relation name and emanating from a given node.

Nodes In the environment are attainable by following relationships. Operations arc provided to
traverse a relationship, that is, to follow a relationship from its source node to Its target node.

4.3.4.1. Kinds of relationships

There are two kinds of relationships: primary and secondary. When a node Is created, an initial
relationship Is established from some other node to the newly created node. This Initial relationship is
called the primary relationship to this new node, and the source node or this initial relationship is
called the parent node. In addition, the new node will be connected back to this parent via a
relationship of the predefined relation PARENT. There Is no requirement that all primary
relationships emanating from a node have the same relation name. Primary relationships rorm a
strictly hierarchical tree; that is, for every node (except the root) there Is one and only one sequence
or primary relationships leading to It from the node that is the root of the tree. No cycles can be
constructed using only primary relationships.

The primary relationship Is broken by DELETE_ NODE or DELETETREE operations. After
deletion or the primary relationship to a node, the node is said to be unobtainable. A non-ezisting
node Is one which has never been created. RENAME operations may be used to make the primary

relationship to a node emanate from a dilfferent node which becomes the new parent or the node. The
operations DELETENODE, DELETETREE. RENAME, and the operations creating nodes are the
only operations that manipulate primary relationships. They maintain a state in which each node ha.-
exactly one parent and a unique primary pathname (see Section 4.3.5).

Secondary relationships are arbitrary connections which may be established between two existing
nodes; secondary relationships may form an arbitrary directed graph. User-defined secondary
relationships are created with the LINK procedure and broken with the UNLINK procedure.
Secondary relationships may exist to unobtainable nodes.

4.3.4.2. Basic predefined relations

The CAIS predefines certain relations. Relationships belonging to a predefined relation cannot be
created. modified, or deleted by means of the CAIS Interfaces and their relationship keys are the
empty string, except where explicitly noted. The semantics of the predefined relations which are basic

to the node model, as well as related concepts of the CAIS, are explained In this Section and Section
4.4. The basic predefined relations explained In this Section are USER, DEVICE, JOB,
CURRENTJOB, CURRENTUSER and CURRENTNODE.

The CAIS node model Incorporates the notion of a user. A user may be an Individual, project, or
other organizational entity; this notion is not equated with only an Individual person. Each user has
one top-level node. This top-level node Is a structural node which represents the user and from It the
user can access other structural, file and process nodes.

IS

PROPOSED ML-STD-C.MS

31 JANUARY 19R

The CAIS node model incorporates the notion of a system. This notion provides the mealls of

administering all the entities represented within one CAIS imp' ntatio,. This notion implies the

existence of a system-level node which acts as the root of the CA primary relationship tree spanning

the entire node structure. Each top-lcvel node Is reachable frorm the system-level node along a primary

relationship of the prederined relation USER emanating from .e system-level node. The key of this

relationship is the user name. Each user name has a top-levi node associated with it. The system-
level node cannot be accessed explicitly by the user via the CAIS Interfaces. It may only be

manipulated by Interfaces outside the CAIS, e.g.. to add new relationships of 1he predefined relation

USER emanating from the system-level node.

The CAIS node model Incorporates the notion of devices. Each device is described by a ile node. This
file node is reachable from the system-level node along a primary relationship of the prederined

relation DEVICE emanating from the system-level node. The key of this relationship is the devicc
name. The CAIS does not define Interfaces for creating nodes which represent devices; such interfaces

are to be provided outside the CAIS.

The CAIS node model Incorporates the notion of a job. When a user logs onto the APSE or calls the

CREATE JOB procedure, a root process node is created which often represents a command
Interpreter or other user-communication process. it is left to each CAS Implementation to set up
methodology for users to log onto the APSE and for enforcing any constraints that limit the top-leVL.

nodes at which users may log on. After logging onto the APSE, the user will be regarded by the CAIS
as the user associated with the top-level node at which he logged on. A process node tree, spanned by

primary relationships, develops from the root process node as other processes (called dependent
processes) are Initiated for the user. A Particular user may have several root processes nodes
concurrently. Each corresponding process nod(, tree Is referred to as a job. The predefined JOB
relation Is provided for locating each of the rcot process nodes from the user's top-level node. A
primary relationship of the predenined relation .1OB emanates from each user's top-level node to the

root process node of each of the user's jobs. The key of this relationship is assigned by the mechanism
of interpreting the LATEST _ KEY constant (see Section 4.3.5) unless otherwise specified in the

CRFATE JOB procedure call.

While the CAJS does not specify an Interface for creating the initial root process node when a user
log-i onto the APSE. the effect is to be the same as a call to the CREATE _ JOB procedure. The

secondary relationships which the Implementation must establish are found in TABLEVI. In

particular. secondary relationships of the predefined relations USER and DEVICE must be

established, with the appropriate user and device names as keys. These relationships emanate from
the root process node being created to an Implementation-defined subset of top-level nodes and file

nodes representing devices, respectively. Dependent process nodes in the job Inherit these
relationships. File nodes representing devices and top-level nodes of other users can be reached from

a process node via a relationship of the relation DEVICE or USER and a relationship key which is

Interpreted as the respecti.e device or user name.

CURRENT-JOB, CURRENTUSER, and CURRENTNODE are predeflned relations which

provide a convenient means for identifying other CAIS nodes. The relationship of the predefined
relation CURRENT JOB always points to the root process node of a process node's job. The
relationship of the predtflned relation CURRENT _USER always points to the user's top-level node.

The relationship of the i rdefned relation CURRENT _ NODE can be used to point to a node which
represents the process' current focus or context for its activities. The process node can thus use the

CURRENT NODE f' a base node when specifying pathnames (see Section 4.3.5). The CAIS
requires that, when a root process node Is created, it has a relationship of the predefnned relation

CI'RRENT_ NODE pointing to the top-level node for the user.

16

PROPOSED MII-STD-(M,-

31 JANt., RA 19.1

The node model makes use of the concept or a current process. This concept is implicit In all calls 1W

CAIS operations and refers to the process ror the currently executing program making the ,dl. It
defines the context in which the parameters are to be interpreted. In particular, pathnames are

determined in the context of the current process.

4.3.5. Path. and pathnamn

Every accessible node may be reached by following a sequence of relationships; this sequence is called
the path to the node. A path starts at a known (not necessarily top-level) node and follows a
sequence of relationships to a desired node. The path from the system-level node to a given node
traversing only primary relationships Is called the unique primary path to the given node.

Paths are specifled using a pathname syntax. Starting from a given node, a path Is followed by
traversing a sequence of relationships until the desired node is reached. The pathname for this path
Is made up of the concatenation of the names of the traversed relationships In the same order In

which they are traversed.

The syntax of a pathname is a sequence of path elements, each path element representing the
traversal of a single relationship. A path element Is an apostrophe (pronounced "tick ") followed by a
relation name and a parenthesized relationship key.

Relation names and relationship keys follow the syntax of Ads identifiers. Upper and lower case are
treated as equivalent within such Identifiers. If the relationship key of a path element Is the empty
string, the parentheses may be omitted. Thus, 'PARENT and 'PARENT() refer to the same node.

The CAIS predefines the relation DOT. If the relation name In a path element Is DOT, then the path
element may be represented simply by a dot ('.') followed by the relationship key. Thus.
'DOT(TRACKER) Is the same as .TRACKER. Relationship keys of relationships of the DOT felation
may not be the empty string. Instances of the DOT relation may be manipulated by the user within

access right constraints. Relationships of the DOT relation are not restricted to be primary
relationships and are not associated with any other CAIS-specfic semantics.

The starting point for Interpretation of a pathname is always the current process node. A pathname
may begin simply with a relationship key, not prefixed by either an apostrophe or .' . This is taken
to mean interpretation following a relationship emanating from the current node with the relation

name DOT and with the given key. Thus LANDING SYSTEM is the same as

'CURRENT NODE.LANDING SYSTEM.

For example, all of the following are legal node pathnames, and they would all refer to the same node

If the relationship of the predefined relation points to the same node as "USER(JONES).TRACKER

and the relationship of the predenned relation points to the same node as "VSER(JONES):

a. LANDING _SYSTEM'WITH_UNIT(RADAR)

b. "USER(JO NES). TRACKER. LANDING _SYSTEM'WITH _ UNIT(RADAR)

c. 'CURRENT_ USER.TRACK FR.I,ANDING_ SYSTEM'WITI_ LT NIT(RADAR)

A pathname may also be a : . This Is Interpreted as referring to the current process node.

By convention, a relationship key ending In '#' Is taken to represent the LATEST _KEY

(lexicographically last). When creating a node or relationship, use of '#' to end the final relationship

17

m ato~
m i -"

- - -" *Ell

PROPOF IL,-T.-(AP

31 JAN . R N I W,

key of a pathname will cause a relationship key v be automatically assigned, lexicographlcally

following all previous relationship keys for the same -elation and Initial relationship key character

sequence of relationships emanating from that particulor node.

Identification of a node is provided by a pathname or by a given node and an Identification of a

relationship emanating from the given node by means of its relation name and relationship key. The
phrase to identify means to provide an Identification for a node. A node Identification Is considered

an illegal identification If either the pathname or the relationship key or the relation name is

syntactically Illegal with respect to the syntax defined in Table I. An Illegal identification is treated a-s

an Identification for a non-existing node.

A pathname Implies traversal of a node If a relationship emanating from the node Is traversed:
consequently all nodes on the path to a node are traversed, while the node at the end of the path is

not traversed. An Identification that would require traversal of an unobtainable or Inaccessible node is

treated as the Identification for a non-existing node.

The pathname associated with the unique primary path Is called the unique primary pathname of the
node. The unique primary pathname of the node is syntactically Identical to, and therefore can be
used as, a pathname whose interpretation starts at the current process node. It always starts with

"USER(user_ name).

When identifying a node. use or *#" to end any relationship key In the pathname is Interpreted as

the relationship key of an existing relationship, lexicogra phically following all other keys for the same

relation and Initial relationship key character sequence of relationships emanating from that particular
node.

PROPOIED k1 ,<TD-C 401-

31 JANJAR') 1
M

S

Table L Pathname BNF

path name::= relationship key{path_ element} I
path _element{path element} I:

path element::= 'relation_name A relationship_ key
.relationship _ key

relation_ name::= Identifier

relationship_ key::= Identifier I identifier I#

Note: the relation name DOT must have a non-empty relationship key.

Notation:
1. Words - syntactic categories
2. II - optional Items
3. (} - an item repeated zero or more times
4. - separates alternatives

4.3.6. Attributes

Both nodes and relationships may have attributes which provide Information about the node or
relationship. Attributes are identified by an attribute name. Each attribute has a name and has a
list of the values assigned to It, represented using the LISTUTILITIES type called LIST TYPE
(see Section 5.4.1).

Relation names and attribute names both have the same form (that is, the syntax of an Ada
Identifler). Relation names and node attribute names for a given node must be different from each
other; relationship attribute names are In a separate name space.

The CAIS predefines certain attributes which are discussed in Section 5 and listed In Appendix
A. Predefined attributes cannot be created, modified or deleted by the user, except where explicitly
noted. The user can also create and manipulate user-defined attributes (see Section 5.1.3).

19

31 JANt ARN 1o.M

4.4. Discretionary and mandatory acces control

The CAIS specifies mechanisms ror discretionary and mandatory access control (see)TSE" V These
specifications are only recommendations. Alternate discretionary or mandatory ac.ess control

mechanisms can be substituted by an implementation provided that the semantics or all interfaces in

Section 5 (with the exception or Section 5.1.4) are Implemented as specified.

In the CAIS, access control refers to all the aspects of controlling access to information. It consists

of:

a. access control rights Descriptions of the kinds of operations which can be performed.

b. access control rules The rules describing the correlations between access rights and those
rights required for an Intended operation.

c. access checking The operation of checking granted access rights against those rights
required for the Intended operation according to the acces control rules, and either
permitting or denying the Intended operation.

All of the Information required to perform access checking is collectively referred to as access control
information. The resulting restrictions placed on certain kinds or operations by access control are

called access rights constraints.

4.4.1. Node acces

In the CAIS. the following operations constitute access to a node:

a. reading or writing of the contents of the node.

b. reading or writing or attributes of the node,

c. reading or writing of relationships emanating from a node or of their attributes, and

d. traversing a node (see Section 4.3.5).

The phrase "reading relationshipso is a convenient short-hand meaning either traversing relationships
or reading their attributes. To access a node. then, means to perform an) of the ibove access
operations. The phrase *to obtain accss" to a node means being permitted to perform certain
operations on the node within access right constrtints. Access to a node by means of a pathname can

only be achieved If the current process has the rcspectlve access rights to the node as well as to any
node traversed on th path to the node.

In the CAIS. the following operations do not con-titute access to a node: closing node handles to a
node, opening a node with Intent EXISTENCE (9c.- TABLE V), reading or writing of relationships of
which a node Is the target or of the attributes of -uch relationships, querying the kind of a node and

querying the status of node handles to a node.

A node is inaccessible If the current process do not have sufficient discretionary access control
rights to have knowledge of the node's existence (. if mandatory access controls prevent Information
flow from the node to the current process. The property of Inaccessibility is always relative to the
access rights of the currently executing process, while the property of unobtainability Is a property of
the node alone.

20

7

4.4.2. Discretionary acces control

Discretionary accss control is a means of restricting access to objects based on the Identity of
subjects and/or groups to which they belong. The controls are discretionary in the sense that a
subject with certain access permission Is capable of passing that permission (perhaps Indirectly)

on to any other subject ITCSECJ.

In the CAIS, an obictis any node to be accessed and a subject is any process (acting on Ihe behalf of
a given user) performing an operation requiring access to an object. Discretionary access control is
used to limit access t nodes by processes running programs on behalf of users or groups of users.

An object can have established for It a secondary relationship or the predefined relation ACCESS
which specifies the kinds of operations which may be performed on it. A process node may have a
secondary relationship or the ADOPTED ROLE relation established to the same target node & a
predeflned relation relationship. The information provided by these two kinds or relationships
determines the approved access rights which the process has to the object (see Section 4.4.2.3). When
the process tries to open the object node, the acces rights implied by the INTENT parameter (see
Section 5.1) are checked against these approved acce rights to determine whether the process can
perform the operation on that node.

4.4.2.1. Establishing grantable acces. riKht.

An object may be the source node of zero or more secondary relationships of the predefined relation
ACCESS (called access relationships). Each accem relationship has a predefined attribute, called
GRANT, which specifies what access rights to the object are grantable to processes (subjects).

In order to limit the set of nodes to which access relationships can be established, the CAIS
discretionary access control model requires that, upon creation of a root process node, secondary
relationships of the predeflned relation ALLOW _ACCESS be created. These relationships emanate
from the created root process node to an Implementation-defined set of nodes. The CAIS
implementation must establish at least the secondary relationship of the predefined relation
ALLOW ACCESS with the user name as key from the root process node to the user top-level node.
All such relationships are Inherited by the process nodes created under the root process node.

Access relationships and GRANT attributes are established for objects in one of two ways: using the
Interfaces provided in the package ACCESSCONTROL or at node creation.

The SET ACCESS CONTROL procedure can be used by a process to establish an access
relationship between two nodes and to set the value of the GRANT attribute. This procedure can also
be used to change the value of the GRANT attribute of an existing access relationship.

Access relationships are also established at node creation. The ACCESS _CONTROL parameter
provides the necessary information in two parts. One part provides relationship keys which are used
to Identify the nodes which will be the targets of the new access relationships. if the current process
node has a relationship of the relation ALLOWACCESS whose key is one of the keys given in the
paramewr, then the node identified by that relationship becomes the target of a new access
relationship from the created node.

The other part of the ACCESS CONTROL parameter gives a set of acces rights for each
relationship key. These access rights become the value of the GRANT attribute of the acces
relationship created with the corresponding key.

The ACCESS CONTROL parameter specifies the Initial access control Information to be established

21

PROPOED MIL-STD-(A'J

31 JANA.lR' 9M

for a node being created using named Ada aggregate syntax; that is, it consists of a list or Items each
of which has a name (Identifying a target node for an access relationship) followed by a list or values

for the GRANT attribute.

For every relationship key named in the ILt for which the current process node has a relationship of

the predefined relation ALLOW _ ACCESS. a relationship o the predeflned relation ACCESS with

the given relationship key and the given access rights value for its GRANT attribute valie is created

from the new node to the target of the relationship or the predeflned relation ALLOW ACCESS

4.4.2.2. Adopting a role

In the CAIS. a role Is asociated with a set o access rights that a subject can acquire wh('n It acts

under authority of that role. Each role is associated with a CAIS user, a program being executed, or a

particular group o users, programs or subgroups. A subject (process) may act under the authority of
several roles. Roles can be acquired dynamically.

In the CAIS a role Is represented by a node; the associated access rights are determined by access
relationships as described In the following sections. This node may be a top-level node representing a

user, a node containing the executable Image of a program, or a structural node representing a group.

The structural node representing a group has relationships emanating from it to the nodes which
represent the group's members.

Each group member is Identified either by a primary relationship of the predefined relation
PERMANENT MEMBER or by a secondary relationship o the predeflned relation
POTENTIAL _ MEMBER emanating from the group node. The phrase permanent member or a group
refers to any node reachable from a node representing the group via primary relationships o the
predefined relation PERMANENT MEMBER. The relation PERMANENT MEMBER may be used
to create a hierarchy o nodes representing roles by denning members or a group that are themselves

groups. A user top-level node may not be the target o a primary relationship or the predetined
relation PERMANENT MEMBER emanating from a group node due to the restriction that user
top-level nodes can only have a primary relationship from the system-level node.

Secondary relationships o the predefined relation POTENTIAL MEMBER are used to identify those
members that may dynamically acquire membership In the group. The phrase potential member o a

group refers to any node that Is the target of a relationship o the predefined relation
POTENTIAL_MEMBER from that group or from any of that group's permanent members.

When a process adopts a particular role, a secondary relationship o the predefined relation

ADOPTED _ROLE is created from the process node to the node representing the role. There may be
multiple relationships of the predefined relation ADOPTED _ ROLE emanating from a process node.

Roles are adopted either at creation o the process node or explicitly. When a process is created, it
implicitly adopts the role represented by the fie node containing an executable image o the program

It Is executing. When a root process node Is created, It Implicitly adopts the role represented by Its
current user node. When any process node is created, It implicitly Inherits the relationships or the

relation ADOPTED _ ROLE or the node of Its creating process. A process may explicitly adopt a role
associated with a group using the ADOPT procedure (Section 5.1.4.4). For a process to adopt a role

assoclated with a given group, a node representing some other adopted role of the process must be a
potential member or the given group.

22

31 JANI AR)l IVA-,

4.4.2.3. Evaiuating acceas rights

The value of the GRANT attribute IS a list whose syntax is given by the BNF In TABLE II. The
necessary right Is an access right, and the resulting rights are a list of access rights. An actess right
name has the syntax or an Ada identifier.

Table 11. GRANT attribute value BNF

grant - attribute - value::= ([grant_ item {.grant _ temi])

grant _ itm::= ([necessary _rIght=>J resulting - rights - list)

necessary _ right::=~ Identifier

resulting__ rights _ list::= Identifier
(identifier f, identirler})

Notation:
1. Words - syntactic categories
2. -optional items
3. {}-an itemn repeated zero or more times
4. -Separates alternatives

The syntax Is consistent with that given In Section 5.4. The interfaces in Section 5.4 can be used to
construct and manipulate values of the GRANT attribute.

Checking or discretionary access control rights Involves relevant grant Items and approved acces
rights, both or which are derived from the values or GRANT a(tribute-.. For a given subject. and
object, relevant rant items are the grant Items In values of GRANT attributes of relationships or the
relation ACCESS emanating from the object and pointing at any node representing a role which is an
adopted role of the process subject or representing a group one of whose permanent members is an
adopted roie of the process subject. Approv'ed access rights are access rights whose names appear in
resulting rights lists of relevant grant Items for which either (1) the necessary right I- null or (2) the
necessary right Is an approved access right.

For example, given a process node SUBJECT, an object OBJECT, and two nodes ROLEl and ROLE2
representing roles, the following relationships might exist:

a. a relationship of the relation ACCESS from OBJECT to ROLE) with a GRANT attribute
value of (REAlDMAIL - >(READ. WRITE)).

b. at relationship of the relation ACCESS from OBJECT to ROIE2 with a GRANT attribute
value or (READMAIL).

23

.oN-~cm~vE CO.USTVE

X E
12 1 X

S 9
11 T R VNACVCAC RAVA AA R R AC C RWRCIC AC RAVA ARWR AR C

o It X X X X X
X v X X X X X X X X X X X Y

ItC X X
a VC X XX X X
X AC X X X
C NA X
L VA X X
U AA X
S 31 X X
I WR X X XX X
V AR X XX X
E C X X X X X X

E= X

1 a X X X I X I X X X X

I WX X X X X X I X X XX X XX I X X X X I X X X X
C NC X X X X
L VCXX X X X I X X X X X
U AC X X X X X X
S NA X X
I VA X X X
V AA X X
E RR X X X X

WR XX X X X X X X X X
AM X X XX X X XX

C XX X X X X X X X X X X

x aopen with intact r2 in blocked if "aere are open handle. opened with
intent II.

KzXist a masTnw R a "EAD W g WRITE
NC s READ CONTEWMT VC a WRMT COwrzwr AC a APPEND CONTENTS
ILA - READ ArMIMTMS VA - WRIT A1TMI~fl*E AA x APPEND ArMIBEJES
RR - READ RELATionSHIPS WR - WRITE ATTRIMMTS AR =APPEMD RELATIONSHlIPS

Figuare 2. Matrix of access synch ronization constraints

37 ~ ~ I2 Y-~

PROPOS'ED i1IL-ST7-(AIS

31 JANUl4R 191L,

specifled In FIGURE 2. Open and change _intent operations are additionally
delayed If tbere are open node handles to the node with Intent to read, wriA or
append relationships or to read, write or append access control Information.

EXCECUTE: Open and change_ intent operations are delayed If the node contents are locked
against read operations. The established access right for subsequent operatioro. is
the permission to Initiatoe a process taking the node contents as executable image.

Open node bandles can block other attempta to open other node bandies or to change the Intent of

other node handies according to the rules demonstrated In FIGURE 2.

L 36

po Jw \I l

For EXCLUSIVE WRITE ATTRIBUTES, the node Is locked against opens with
Intent to read. write or append attributes as specified in FIGURE 2. Open and
change_ Intent operations are additionally delayed if there are open node handles tw
the node with Intent to read, write or append attributes.

APPEND_ ATTRIBUTES, EXCLUSIVEAPPENDATTRIBUTES:
Open and change_intent operations are delayed if the node or its attributes are
locked against append operations. The established access right for suhsequent
op rations is to create node attributes.

For EXCLUSIVEAPPENDATTRIBUTES, the node is locked against opens
with Intent to write or append attributes as specifled In FIGURE 2. Open and
change Intent operations are additionally delayed If there are open node handles to
the node with intent to write or append attributes.

READ _RELATIONSHIPS. EXCLUSIVEREADRELATIONSHIPS:
Open and changelntent operations are delayed If the node or Its relationships are
locked against read operations. The established access right for subsequent
operations Is to read node relationships, Including their attributes.

For EXCLUSIVE _READ _ RELATIONSHIPS, the node Is locked against opens
with Intent to write relationships as specified in FIGURE 2. Open and
change_ intent operations are additionally delayed It there are open node handles to
the node with Intent to write relationships.

WRITE RELATIONSIIPS, EXCLUSIVE WRITE RELATIONSHIPS:
Open and changelntent operations are delayed If the node or Its relationships are
locked against write operations. The established access right for subsequent
operations Is to write or create node relationships, Including their attributes.

For EXCLUSIVE WRITERELATIONSHIPS, the node Is locked against opens
with intent to read, write or append relationships as specified In FIGURE 2. Open
and change Intent operations are additionally delayed if there are open node
handles to the node with intent to read, or write append relhtionships.

APPEND_ RELATIONSHIPS. EXCLUSIVE APPEND RELATIO NSIiIPS:
Open and change_intent operations are delayed if the node or its relationships are
locked against append operations. The established access right for subsequent
operations Is to create node relationships, Including their attributes.

For EXCLUSIVEAPPENDRELATIONSHIPS, the node is locked against opens
with intent to write or append relationships as specified in FIGURE 2. Open and
changelntent operations are additionally delayed if there are open node handles to
the node with Intent to write or append relationships.

CONTROL. EXCLUSIVE CONTROL:
Open and change_intent operations are delayed if the node or Its relationships are
locked against write or control operations. The established access right for
subsequent operations Is to read, write or append access control Information.

For EXCLUSIVE CONTROL. the node Is locked against opens to read, write, or
append relationships or to read, write, or append access control Information as

35

PROf' 4 I) NIIL-'T-(A. S

or relationships are locked against write operations. The established access right for

subsequent operations is to write, create or append to node contents, attributes and

relationships.

For EXCLUSIVE WRITE, the node Is locked against opens with any read, write
or append Intent as specified In FIGURE 2. Open and changeintent operations

are additionally delayed I' there are open node handles to the node with read, write

or append intent.

READCONTENTS, EXCLUSIVE READ CONTENTS:
Open and change_intent operations are delayed If the node or Its contents are

locked against read operations. The established access right for subsequent

operations Is to read the node contents.

For EXCLUSIVEREADCONTENTS, the node contents are locked against all

opens with write intent as specified In FIGURE 2. Open and change_Intent
operations are additionally delayed If there are open node handles to the node with

Intent to write Its contents.

WRITECONTENTS, EXCLUSIVEWRITE CONTENTS:
Open and change_intent operations are delayed if the node or Its contents are
locked against write operations. The established access right for subsequent
operations is to write or append to the node contents.

For EXCLUSIVE WRITECONTENTS, the node contents are locked against

opens with read, write or append intent as specified In FIGURE 2. Open and
changeintent operations are additionally delayed if there are open node handles to
the node with Intent to read, write or append to Its contents.

APPEND CONTENTS, EXCLUSIVE APPEND CONTENTS:
Open and change_intent operations are delayed If the node or Its contents are
locked against append operations. The established access right for subsequent

oper:tions is to append to the node contents.

For EXCLUSIVEAPPENDCONTENTS, the node contents are locked against
opens with append or write intent as specified In FIGURE 2. Open and
change _intent operations are additionally delayed if there are open node handles to
the node with Intent to append or write to Its contents.

READ_ ATTRIBUTES, EXCLUSIVEREADATTRIBUTES:

Open and changeintent operations are delayed If the node or Its attributes are
locked against read operations. The estabhlished accems right for subsequent
operations Is to read node attributes.

For EXCLUSIVE_ READ_ ATTRIBUTES. the node Is locked against opens with

Intent to write attributes as specified In FIGURE 2. Open and changeIntent
operations are additionally delayed If there are open node handles to the node with
Intent to write attributes.

WRITEATTRIBUTES. EXCLUSIVE WHITEATTRIBUTES:

Open and change intent operations are delayed if the node or Its attributes are
locked against write operations. The established access right for subsequent

operations Is to modify and create node attributes.

34


~~~PRO()O-ED) 16111[, (

31 JANId" R! K,

SECURITY_ VIOLATION is raised whenever an operation is attempted which violates mandatory

access controls for 'write' operations. SECURITY -VIOLATION is raised only If the conditions for

other exceptions are not present.

5.1.2. Package NODE-MANAGEMENT

This package defines the general primitives for manipulating, copying, renaming and deleting nodes

and their relationships.

The operations deflned In this package are applicable to all nodes, relationships and attributes except

where explicitly stated otherwise. These operations do not include the creation or nodes. The creation
of structural nodes Is performed by the CREATENODE procedures of package

STRUCTURAL NODES (see Section 5.1.5), the creation of nodes for processes is performed by
INVOKEPROCESS, SPAWNPROCESS and CREATEJOB of package

PROCESS-CONTROL (see Section 5.2.2). and the creation or nodes for fies is performed by the

CREATE procedures of the Input and output packages (see Section 5.3).

Three CAIS Interfaces for manipulating node handles are: OPEN opens a node handle, CLOSE closes

the node handle, and CHANGE_ INTENT alters the specification of the Intention of node handle
usage. In addition, GET PARENT. GETCURRENT NODE, GETNEXT,

OPENFILENODE and the node creation procedures also open node handles. These Interfaces

perform access synchronization In accordance with an intent specifled by the parameter INTENT.

Operations which open node handles or cl inge their Intent are central to general node administration
since they manipulate node handles and most other Interfaces take node handles as parameters.
While such other interfaces may also be i rovided in overloaded versions, taking pathnarnes as node

identification, these overloaded versions :,!e to be understood as Including implicit OPEN calls with

appropriate Intent specification and a d "rault TIME LIMIT parameter. Subsequent uses of the

phrase 'open operation' may refer to any W' the OPEN, (;ET_CURRENT NODE, GETPARENT,
GETNEXT and OPEN_ FILE_ NODE, ,peratlons.

One or more of the Intents defined In TAItLE V can be expressed by the INTENT parameters.

Table V. Intents

EXISTENCE: The established access right for subsequent operations Is to query properties of the
node handle and existence of the node only. Locks on the node have no delaylrg
effect.

READ, EXCLUSIVE READ:
Open and CHANGE INTENT operations are delayed If the node. Its contonts.
attributes or relationships are locked against read operations. The established access

right for subsequent operations is to read node contents, attributes and

relationships.

For EXCLUSIVE_ READ. the node Is locked against opens with any write Intent as

specified In FIGURE 2. Open and change_ Intent operations are additionally
delayed if there are open node handles to the node with write Intent.

WRITE, EXCLUSIVE WRITE:

Open and change_Intent operations are delayed ir the node, Its contents, attributes

33



PROPOSED MIL-STD-CAJS

31 JANtAR) 1985

subtype FoRm STRING is STRING;

NODE TYPE describes the type for node handles. NODE_ KIND Is the enumeration of the kinds
of nodes. INTENT_ SPECIFICATION describes the usage of node handles and is further explained
In Section 5.1.2. INTENTION is the type of the parameter INTENT of CAIS procedures which open
or change the Intent or a node handle, as further explained In Section 5.1.2.

NAME STRING. RELATIONSHIPKEY. RELATIONNAME. and FORMSTRING are
subtypes for pathnames, relationship keys, and relation names, as well as for form strings (see (LRM!
14). Value of these string subtypes are subject to certain syntactic restrictions whose violation causes
exceptions to be raised.

CURRENT USER constant NAME-bTRING :'CURRENT USER';
CURRENT_ ODE constant NAME-STRING 'CURRENTNODE;
CURRENTPROCESS constant NAME-STRING
LATEST KEY constant RELATIONSHIP KEY: 's';
DEFAULT _RELATION: constant RELATION NAME = %DOT';
NO DELAY : constant DURATION := DURATION'FIRST

CURRENT USER. CURRENTNODE, and CURRENTPROCESS are standard pathnames for
the current user's top-level node, current node, and current process, respectively. LATESTKEY
and DEFAULT RELATION are standard names for the latest key and the default relation name.
respectively. NO_ DELAY is a constant of type DURATION (see [LRMJ 9.6) used for time limits.

Aa- ERROR exception;
USEERROR exception;
STATUS :ERR . exception;
LOCK _ERROR exception;
INTENT VIOLATION exception;
ACCESS VIOLATION exception;
SECURITY VIOLATION ; exception;

NAME ERROR Is raised whenever an attempt is made to access a node via a pathname or node
handle while the node does not exist, It Is unobtainable, discretionary access control constraints for
knowledge of existence of a node are violated, or mandatory access controls for 'read' operations are
violated. This exception takes precedence over ACCESSVIOLATION and
SECURITY VIOLATION exceptions,

USE ERROR Is raised whenever a restriction on the use of an Interface Is violated.

STATUS_ ERROR Is raised whenever the open status of a node handle does not conform to
expectations.

LOCK ERROR Is raised whenever an attempt Is made to modify or lock a locked node.

INTENT VIOLATION Is raised whenever an operation Is attempted on an open node handle which
is In violation of the intent associated with the open node handle.

ACCESSVIOLATION is raised whenever an operation Is attempted which violates access right
constraints other than knowledge of existence of the node. ACCESS VIOLATION Is raised only if
the conditions for NAME _ IIROR are not present.

32

-l[ -



PRPHOFIf) kil T[-( -0,

31 J*,,%k RN 1914!

5. DETAILED REQUIREMENTS

The following detailed requirements shall be fulfilled In a manner conststent, with the model
descriptions given In Section 4 of this standard.

5.1. General node managtement

This section describes the CAIS Interfaces for the general manipulation of nodes, relationships and
attributes. These Interfaces are defined in five CAIS packages: NODE_-DEFINITIONS defines types.

subtypes, exceptions, and constants used throughout the CAIS; NODE_-MANAGEMENT defines
Interfaces for general operations on nodes and relationships; ATTRIBUTES defines Interfaces for
general operations on attributes; ACCESS_-CONTROL defines Interfaces for setting and adopting
access rights; and STRUCTURAL_ -NODES defines Interfaces for the creation of structural nodes.

Specialized Interfaces for the manipulation of procs and file nodes and of their relationships and
attributes are defined In Sections 5.2 and 5.3, respectively.

To simplify manipulation by Ada programs, an Ada type NODETYPE is defined for values that
represent an Internal handle for a node (referred to as a node handle. Objects of this type can be
associated with a node by means of CAis procedures, causing an open node handle to be assigned to
the object. While such an asociation is In effect, the node handle Is said to be open; otherwise, the
node handle is said to be closed. Most procedures expect either a parameter of type NODE_ TYPE,
a pathname, or a combination of a base node (specified by a parameter BASE of type NODE_TYPE)
and a path element relative to it, to identify a node.

An open node handle Is guaranteed always to refer to the same node, regardless of any changes to
relationships that could cause pathnames to become Invalid or to refer to different nodes. This
behavior is referred to as the tracking of nodes by open node handles.

5.1.1. Packaxe NODE...J)EFINITIONS

This package defines the Ada type NODETYPE. It also defines certain enumeration and string
types and exceptions useful for node manipuiations.

type NDE TYPE In limited pri-fate;

type NODEKIND Ia (FILE. fTRUCTURAL. PROCESS);

APPEND ArmWimn .REDRLAINHIS WIERiAINbIS

APPENDREAINH.i CONTENTS. wrEcv m
AENCONVETES. OMiEUE EXLSVRAD

EXCLUSIVE WRITE ATTRiarms. EXCLUSIVE APPEND ATrmianwE.
EXCLUSIVE READ iiLTOSIS XLS IERELATIONSHIPS.
EXCLUSIVE APPEiD RLTOSIS xmi E OTNS
EXCLUSIVE -WRITE CONTErF3. ExcLuJSIV!APPEND COxTEviTS.
ExcLusIVECONTRO6L);

type iNTENTIon Is array (POSITIVE range <>) at INTENT SPEnCCATion;

subtype NAME 5731MG Is STRING;
subtype RELATIoNs)ip KEy In ITS! nO;
subtype RELATION KANE is CTR130;

31



PROPOI4:r) kMIsTD.C-AJS
31 JANL.4R 19as

4.5.2. Pragmatics tor SEQUENTIAL 10

A CAIS implementation must support generic instantiation of this package with any (non-limited)
constrained Ads, type whose maximum size In bits (as defined by the attribute
ELEMENT _ TYPE'SIZE) Is at least 2**15.1. A conforming Implementation must also support
instantiation with unconstrained record types which have default constraints and a maximum size in
bNO of at least 2**15-1. It may (but need not) use variable length elements to conserve space In th(
external file.

4.5.3. Pragmatic. for DIRECT T0

Each element of a direct-access f'lie Is selected by an Integer Index or type COUNT. A conforming
Implementation must at least support a range of Indices from one to 20*15-1.

A CAIS Implementation must support generic instantiation of this package with any (non-limited)
constrained Ada type whose maximum size In bits (as defined by the attribute
ELEMENT_- TYPESIZE) is at least 20015-1. A conforming implementation must also support
instantiation with unconstrained record types which have default constraints and a maximum size In
bits of at least 2**15.1. It may (but need not) use varible length elements too conserve space In the
extoernal fle.

4.5.4. Pragtmatic, for TEX 10

A CAIS Implementation must support files with at least 2**1-1 records/lines In total and at least
2*01&-1 lines per page. A CAIS Implementation must support at least 255 columns per line.

30



31 J \\1 .kR IQK-,

assigned to the file node. The attribute LOWEST _ CLASSIFICATION defines the lowest allowable

object classification label that may be assigned to the file node.

When a file node representing the device Is opened, the device Inherits Its security clamlfcatlon label
from the first procr- performing the open operation. If It is not possible to label the node

representing the device within the bounds of the attributes HIGHEST_ CLASSIFICATION and

LOWEST_ CLASSIFICATION, the operation fails by raising the exception

SECURITY VIOLATION.

4.4.3.5. Mand-tory acces checking

When access control is enforced for a given operation, mandatory acces control rules are checked. If
mandatory access controls are not satisfied, the operation terminates by raising the exception

SECURITYVIOLATION. except where the Indication of failure constitutes violation of mandatory

access control rules for "read" operations, In which case NAMEERROR may be raised.

4.5. Pragmatics

This section provides several minimum values for Implementation-determined quantities and sizes.

4.5.1. Pragmatics for CAIS node model

Several private types are defned as part of the CAIS node model. The actual implementation of

these types may vary from one CAIS implementation to the next. However, It Is Important to
establish certain minimum values for each type to enhance portability.

NAMESTRING

At least 255 characters must be supported In a CAIS pathname.

RELATIONSHIP KEY

At least 80 leading characters must be significant In a relationship key.

ATTRIBUTENAME. RELATIONNAME

At least 80 leading characters must be significant in attribute and relation names.

Tree height At least 10 levels of hierarchy must be supported for the primary relationships.

Record size number

At least 2"*15-1 bits per record must be supported.

Open node count
Each process must be able to have at least 127 nodes open simultaneou ly.

List At least 20*15-1 bits per list must be supported.

29



31 JA\I %RN 1gW,

Table IV. Classification attribute value BNF

object_ classification ::- clasification
subject _classification :: classification
classification ::= ( hierarchical _classification,

non _ hierarch ical _ categories )

hierarchical ciiincation :- keyword
non _ hierarchical _categories ::- ([keyword { . keyword ) I

keyword ::= Identifier

Notation:
1. Words - syntactic categories

2. [] - optional Items

3. ( } - an Item repeated zero or more times

4. j - separates alternatives

4.4.3.2. Labeling of process nodes

When a root process is created. It is assigned subject and object classification labels. The method by
which these initial labels are assigned is not specified; however, the labels hall accurately represent
security levels of the specific /users/ with which they are associated TCSECJ. When any non-root
(dependent) process node is created, the creator may specify the ci3asilication attributes xv ociated

with the node. If no classification is specified, the classification is inherited from the crear,,r. The
assigned classification must adhere to the requirements for mandatory access control ovwr write

operations.

4.4.3.3. Labeling of non-process nodes

When a non-process object Is created, It is assigned an object classification label. The classification
label may be specified In the create operation, or It may be inherited from the parent. The assigned
classification must adhere to the requirements for mandatory access control over write operations.

4.4.3.4. Labeling of nodes for devices

Certain file nodes representing devices may have a range of clamsfication levels. The ci-MIfieation
label of the node of the first process opening a handle to one of these nodes Is assigned to the file node
while there are any open node handles to the file node. Only when all open node handles h;ive been

closed can a new classification label be assigned to the file node.

The range of classification levels Is specified by two predefined CAIS node attributes. The attribute
hIGIEST CLASSIFICATION defines the highest allowable object classification label that may be

20



PROPOS.ED MIL,-,TI Al,
31 JA tAR) JQW

Each subject and object Is assigned zero or more non-hierarchical categories which represent
coexisting classifications. A subject may obtain read access to an object if the set of non-hierarchical
categories assigned to the subject contains each category assigned to the object. Likewise. a subject

may obtain write access to an object If each of the non-hierarchical categories assigned to the subject
are Included In the set of categories assigned to the object.

A subject must satisfy both hierarchical and non-hierarchical access rights rules to obtain access to an
object.

In the CAIS, subjects are CAIS processes, while an object may be any CAIS node. Operations are
CAIS operations and are classified as read, write, or read/write operations. Access checking is
performed at the time the operation is requested by comparing the classification of the subject with
that of the object with respect to the type of operation.

4.4.3.1. Labeling of CAIS nodes

The labeling of nodes Is provided by predefined node attributes. A predefined attribute, called
SUBJECT_ CLASSIFICATION, is assigned to each process node and represents the process
classification as a subject. A predefined attribute, called OBJECT CLASSIFICATION, is assigned to

each node and represents the node's clasincation as an object. These attributes have a limited
function and cannot be read or written directly through the CAIS Interfaces. The value of the
attribute is a parenthesized list containing two Items, the hierarchical classification level and the non-
hierarchical category list. The hierarchical classification is a keyword member of the ordered set of
hierarchical classification keywords. The non-hierarchical category list is a list of zero or more
keyword members of the set of non-hierarchical categories. The hierarchical classification level set and
the non-hierarchical category set are Implementation-defined. For example, the following are possible

classification attribute values:

(TOPSECRET, (MAILUSER, OPERATOR, STAFF))

(UNCLASSIFIED, ())

(SECRET. (STAFF))

The BNF for the value of a classification attribute (and of the LEVEL parameter which provides it at

node creation) is given In Table IV.

27



PROPOI ED MIL-STD-CAIS

31 JAMN1 19&.

READ This Is the union of READ RELATIONSHIPS, READATTPIBUTES,

READ CONTENTS and EXISTENCE access rights. This access right is necessary

to open the object with intent READ. It is sufficient to open the object with intent

READ RELATIONSHIPS, READATTRIBUTES or READCONTENTS.

WRITE This Is the union of WRITE RELATIONSHIPS, WRITE_ ATTRIBUTES.
WRITECONTENTS and EXISTENCE access rights. This access right is

necessary to open the object with Intent WRITE. It is sufficient to open the object

with intent WRITE RELATIONSHIPS. WRITE ATTRIBUTI. S or

WRITECONTENTS.

APPEND This Is the union of APPEND RELATIONSHIPS, APPEND ATTRIBUTES,
APPEND CONTENTS and ISTENCE access rights. This access right is

necessary to open the object with Intent APPEND. It Is sufficient to open the
object Yitb Intent APPEND_RELATIONSHIPS, APPENDATTRIBUTES or

APPE 1) -CONTENTS.

EXECUTE The subject may create a process that takes the contcnl- or the object as its

executable image; the access right EXISTENCE is implicitly granted. This access
right is necessary to open the object with intent EXECUTE.

CONTROL The subject may modify access control Information of the object; the aeem right
EXISTENCE is Implicitly granted. This access right Is necessary to open the object

with intent CONTROL.

4.4.2.4. Discretionary access checking

CAIS access control rules state that any access right required for a subject to access an object must
be contained In the set of approved access rights or that object with respect to that subject. The

CAIS model allows discretionary access checking to be performed at the time a node handle Is opened.
At this point access rights implied by the INTENT parameter of the open operation must be a subset

of the approved access rights. If this Is not the case, the operation Is terminated and an exception Is
raised. For subsequent access using the node handle, the access rights required may be compared to

the rights Implied by the intent, rather than the approved access rights.

4.4.3. Mandatory access control

Mandatory access control provides access controls based directly on a comparison or the

individual's clearance or authorization for the information and the classincatlon or sensitivity
designation or the information being sought [TCSEC].

A mandatory access control classification may be either a hierarchical classification level or a non-

hierarchical category. A hierarchical classification level Is chosen from an ordered set or classification
levels and represents either the sensitivity of the object or the trustworthiness or the subject. In

hierarchical classification, the reading of information flows downward towards less sensitive areas,
while the creating of Information flows upward towards more trustworthy individuals. A subject may

obtain read access to an object If the hierarchical classification of the subject is greater than or equal
to that of the object. In turn, to obtain write access to the object, a subject's hierarchical

classiflcation must be less than or equal to the hierarchical classiflcation or the object.

28



PROPO%,ED %II. ,TI-( %1,

Table IM. Predeflned access rights

EXISTENCE The minimum ace rights without which the object is inaccessible to the subject.

Without additional access rights the subject may neither read nor write attributes.

relationships or contents or the object.

READ RELATIONSHIPS
The subject may read attributes of relationships emanating from the object or use
it for traversal to another node; the access right EXISTENCE is implicitly granted.
This access right is necessary to open the object with intent
READ_ RELATIONSHIPS.

WRITERELATIONSHIPS
The subject may create or delete relationships emanating from the object or may
create, delete, or modify attributes of these relationships: the access right
EXISTENCE is implicitly granted. This access right is necessary to open the object
with Intent WRITERELATIONSHIPS.

APPEND _RELATIONSHIPS
The subject may create relationships emanating from the object and attributes of
these relationships; the access right EXISTENCE is implicitly granted. This access
right is necessary to open the object with intent APPENDRELATIONSHIPS.

READATTRIBUTES
The subject may read attributes of the object; the access right EXISTENCE is
Implicitly granted. This access right is necessary to open the object with intent
READ ATTRIBUTES.

WRITE _ATTRIBUTES
The subject may create, write, or delete attributes of the object; the access right
EXISTENCE is Implicitly granted. This access right is necessary to open the object
with Intent WRITEATTRIBUTES.

APPEND ATTRIBUTES
The subject may create attributes of the object; the access right EXISTENCE is
Implicitly granted. This access right is necessary to open the object with Intent
APPENDATTRIBUTES.

READCONTENTS
The subject may read contents of the object; the access right EXISTENCE is
implicitly granted. This access right Is necessary to open the object with intent
READCONTENTS.

WRITE CONTENTS
The subject may write contents of the object; the access right EXISTENCE is
Implicitly granted. This access right is necessary to open the object with Intent
WRITE CONTENTS granted. This access right Is necessary to open the object
with Intent READCONTENTS.

APPENDCONTENTS
The subject may append contents or the object; the access right EXISTENCE is
implicitly granted. This access right is necessary to open the object with intent
APPENDCONTENTS.

25



PROP0S I|,,-7 T-1.7|
T

r. a relationship or 'he relation ADOPTED ROIE rrom SUBJECT to ROLF I. and

d. a relationship or the relation ADOPTED ROLE from SUBJECT to ROLE2.

The relevant grant items are READMAIL and READ'fAIL=>(PEAD, WRiT'). The approved
access rights for SUBJECT to access OBJECT are (1) READMAIL because the neci'Jary rights or the
relevant grant Iten.j or the access relationship to ROLE2 is null and (2) READ and WRITE because
the necessary right. RFADMAIL. of the relevant grant item of the access relatlionship to ROLE1 is

approved. FIGURE I shows a graphic representation of these relationships.

GRANT.
ADMAILs)(READWRITE)

ACCESS

PROCESS NODE

O T SUBJECT STRUCTURAL NODE

FILE NODE

Figure 1. Access relationships

Access rights may be user-defined, but certsin acces rights have speciatl signifl-anee in (AIS
operations. In particular, the CAIS recognizes the access right, liven in Table III and the kirds of
access for which they are necessary or sufficient.

21



PROPOsED 1tL-s'l r-CAV1;

31 JANt'tRN IGIVs

6.1.2.1. Opening a node handle

procedure OPn(O: In o4 NODE -_TYPE;
NAME: t "a $AM I hNG;
INTENT: In INTENTION :=

(1 =) READ)
TIME LIMIT: in DURATION := l0 DELAY);

procedure OP.N (MODE: in out NODE TYPE;
RASE: In ODETYPE ;
KEY: In RELATiONIP_'KEY;
RELATION: In RELATION NAME: =

DUABLT RELATION;
INTENT: In INTENTION := (1 =) READ);
TIME-LIMIT: in DI.ATION : = NO.DELAY);

Purpose:

These procedures return an open node handle In NODE to the node identified by the pathname

NAME or BASE/KEY/RELATION, respectively. The INTENT parameter determines the access
rights available for subsequent uses of the node handle; It also establishes access synchronization
with other users of the node. The TIMELIMIT parameter allows the specification or a time
limit for the delay Imposed on OPEN by the existence or locks on the node. A delayed OPEN
call completes after the node Is unlocked or the specified time limit has elapsed. In the latter
case, the exception LOCK -ERROR Is raised.

Parameters:

NODE Is a node handle, initially closed, to be opened to the identified node.

NAME is the pathname identifying the node to be opened.

BASE is an open node handle to a base node for node Identification.

KEY Is the relationship key for node Identification.

RELATION is the relation name for node identification.

INTENT Is the Intent of subsequent operations on the node; the actual parameter takes the
form of an array aggregate.

TIME LIMIT Is a value of type DURATION, specifying a time limit for the delay on waiting for

the unlocking of a node In accordance with the desired INTENT.

Exceptions:

NAMEERROR
is raised If the pathname specified by NAME is syntacti( l Illegal or If any

traverwd node in the path specified by nsme is unobtainable. Inaccessible or non-
existent or if the relationship specified by RELATION and KEY or by the lst path
element of NAME does not exist. NAME ERROR is also raised if the node to
which a handle Is to be opened Is Inaccessible or unobtainable and the given

INTENT Includes any intent other than EXISTENCE.

USEERROR is raised If the specified INTENT Is an empty array.

6
3Nf



PROPOSED MIL-STD-( AJ,

31 JANt4.R% tom

STATUSERROR
Is raised If the node handle NODE is already open prior to the call on OPEN or if
BASE i not an open node handle.

LOCK ERROR

Is raised If the OPEN operation is delayed beyond the specified time limit due to
the existence or locks In conflict with the specified INTENT This includes any

delays caused by locks on nodes traversed on the path specified by the pathname

NAME or locks on the node Identified by BASE, preventing the reading or
relationships emanating from these nodes.

INTENTVIOLATION

Is raised If BASE was not opened with an Intent establishing the right to read

relationships.

ACCESSVIOLATION

is raised If the current proes' discretionary access control rights are insufficient to
traverse the path specified by NAME by BASE, KEY and RELATION or to obtain

access to the node consistent with the specified INTENT. ACCESSVIOLATION
is raised only If the conditions for NAMEERROR are not present.

SECURITYVIOLATION

Is raised If the attempt to obtain access to the node with the specified INTENT
represents a violation of mandatory access controls for the CAIS.

SECURITY VIOLATION Is raised only If the conditions for other exceptions are
not present.

Notes:

An open node handle acts as If the handle forms an unnamed temporary secondary relationship
to the node; this means that, If the node identified by the open node handle is renamed
(potentially by another process), the open node handle tracks the renamed node.

It Is possible to open a node handle to an unobtainable node or to an Inaccessible node. The

latter is consistent with the fact that the existence of a relationship emanating from an
accessible node to which the user has READ_ RELATIONSHIPS rights cannot be hidden from

the user.

5.1.2.2. Closing a node handle

procedure cLos ClDE: in out NODErfPE);

Purpose:

This procedure severs any association between the node handle NODE and the node and releases

any associated lock on the node Imposed by the Intent of the node handle NODE. Closing an
already closed node handle has no effect.

Parameter:

NODE Is a node handle, Initially open, to be closed.

Exceptions:

39



PROPOSED kil-ST1C \P;

31 JANUARY 195

none

Notes:

A NODE TYPE variable must be closed before another OPEN can be called using the same
NODETYPE variable as an actual parameter to the formal NODE parameter or OPEN.

6.1.2.3. Changing the intention regardingt node handle usage

procedure cumaE-IzrrflT(3i: In out ND TYP;

INTENT: In ITEiON;

TINELxmIT: In DRWATION:=
NODELAY);

Purpose:

This procedure changes the intention regarding use or the node handle NODE. It Is semantically
equivalent to closing the node handle and reopenln-. the node handle to the same node with the
INTENT and TIME LIMIT parameter- or CHANGEINTENT, except that
CHANGE_ INTENT guarantees to return an ol'i, node handle that refers to the same node as
the node handle input In NODE (see the Issue explained in the note below).

Parameter:

NODE Is an open node handle

INTENT Is the Intent of subsequent operttlon. on the node; the actual parameter takes the
form of an array aggregate.

TIME LIMIT is a value of type DURATION, speclf~ing a time limit for the delay oft %:iting for
the unlocking of a node In accordance A Ith the desired INTENT.

Exceptions:

NAME- ERROR

Is raised If the node handle NODE refers to an unobtainable node and INTENT
contains any intent specification other than EXISTENCE.

STATUS _ERROR

Is raised If the node handle NODE Is riot an open node handle.

LOCKERROR
Is raised If the operation is delayed beyond the specified time limit due to the
existence of locks on the node In conflict with the specified INTENT.

ACCESS VIOLATION
Is raised if the current process' discretlonary access control rights are Insufficient to
obtain access to the node consistent with the specified INTENT.
ACCESS VIOLATION Is raised only If the condition for NAME ERROR Is not
present.

SECURITY_ VIOLATION
is raised If the attempt to obtain access consistent with the intention INTENT to
the node specified by NODE represents a violation of mandatory acces controls for

40



31 1k\1 R') IUW,

the CAIS. SECURITY _VIOLATION Is raised only If the conditions ror other

exceptions are not present.

Notes:

use or the sequence of a CLOSE and an OPEN operation Instead or a CHANGEINTENT
operation cannot guarantee that the same node Is opened, since relationships, and therefore the

node identification, may have changed since the previous OPEN on the node.

6.1.2.4. Examining the open status of a node handle

function IS OPEN( : in OM_ TM)
return DOLEAn;

Purpose:

This function returns TRUE If the node handle NODE Is open; otherwise, it returns FALSE.

Parameter:

NODE is a node handle.

Exceptions:

None.

5.1.2.5. Querying the intention of a node handle

function IwTET OF (ODE: In ETYPE)
return IwrEOrIaN.

Purpose:

This function returns the intent with which the node handle NODE Is open.

Parameter:

NODE is an open node handle.

Exception:

STATUSERROR

Is raised if the node handle NODE is not open.

5.1.2.6. Querying the kind of a node

function KIND(NWOE: in NODE TYPE)
return NODMEKIND;

Purpose:

This function returns the kind of a node, either FILE. PROCESS or STRUCTURAL.

Parameter:

NODE Is an open node handIc.

41



PROPOF:D %lIL-STD-C." S

31 J.NtAR'a 198

Exceptions:

STATUSERROR
is raised if the node handle NODE is not open.

5.1.2.7. Obtaining the unique primary pathnane

function PfIMAY A E(NODE: in N00ETYPE)
return MAE-STRING:

Purpose:

This function returns the unique primary name of the node Identified by NODE.

Parameter:

NODE Is an open node handle identifying the node.

Exceptions:

NAME ERROR
Is raised If any node traversed on the primary path to the node is Inaccessible.

STATUS ERROR

is raised If the node handle NODE is not open.

LOCKERROR
Is raised if access consistent with Intent READ _ RELATIONSHIPS to any node
traversed on the primary path cannot be obtained due to an existing lock on the
node.

INTENT VIOLATION
is raised if NODE was not opened with an intent establishing the right to read
relationships.

ACCESS VIOLATION
is raised If the current process' discretionary access control rights are Insufficient to
traverse the node's primary path. ACCESSVIOLATION is raised only if the

conditions for NAMEERROR are not present.

5.1.2.8. Obtaining the relationship key of a primary relationship

function PRIMARY KEY(NODE: in NoE_TYPE)
return RELATIONSHIP_KEY;

Purpose:

This function returns the relationship key of the last path element of the unique primary
pathname of the node.

Parameter:

NODE is an open node handle Identifying the node.

Exceptions:

42



31 JIIt I0
- 
1QW,

NAMEERROR
is raised If the parent node or the node Identified by NODE is Inaccessible.

STATUSERROR
is raised if the node handle NODE is not open.

LOCK _ERROR
is raised It the parent node is locked against reading relationships.

INTENT _VIOLATION
is raised If the node handle NODE was not opened with an Intent establishing the
right to read relationships.

ACCESS VIOLATION
Is raised If the current process' discretionary access control rights are insuff cient to

obtain access to the node's parent consistent with intent READ _ REIATIONSIIII'.

ACCESSVIOLATION is raised only If the conditions for NAMEERRIOR are
not present.

5.1.2.9. Obtaininix the relation name of a primary relationship

function PRIMAY RELATION (NDE: In ME TYPE)
return RELATIONNAME;

Purpose:

This runction returns the relation name of the last path element of the unique primary
pathname of the node.

Parameter:

NODE is an open node handle Identifying the node.

Exceptions:

NAMEERROR
Is raised If the parent node of the node Identified by NODE is Inaccessible.

STATUSERROR

Is raised If the node handle NODE Is not open.

LOCKERROR
Is raised If the parent node Is locked against reading relationships.

INTENTVIOLATION
Is raised If NODE was not opened with an intent establishing the right to read
relationships.

ACCESSVIOLATION
Is raised if the current process' discretionary access control rights are Insufficient to
obtain access to the node's parent consistent with intent to

READ _ REATIONSIIIPS. ACCESSVIOLATION is raised only Ir the conditions
for NAMI_ ERROR are not present.

43



PROPOSED Nh1LSTD-C.AS
31 JAM AR GMS

5.1.2.10. Obtaining the relationship key of t e last relationship traversed

function PATH_ KEY (NODE: in NOETYPE)
return RELATIOHIIPKEY;

Purpose:
This function returns the relationship key of the r, lationship corresponding to the last path
element or the pathname used In opening this node I Lndle. Since a path element is a string, the
relationship key is returned even if the relationship h s been deleted.

Parameter:

NODE is an open node handle.

Exceptions:

STATUSERROR
is raised If the node handle NODE Is ii t open.

5.1.2.11. Obtaining the relation name of the last relationship traversed

function PATH_ REIATION(NODE: in UOD-TYPE)

return RELATIONMAME;

Purpose:

This function returns the relation name or the r' ttionshlp corresponding to the lw-st path
element of the pathname used In opening this node h ridle. The relation name Is returned even if
the relationship has been deleted.

Parameter:

NODE is an open node handle.

Exceptions:

STATUSERROR
Is raised if the node handle NODE Is : t open.

5.1.2.12. ObtaiLning a partial pathname

function nASE PATH(NAME: in MAE STRING)return MLlESTRt IN;

Purpose:

This runction returns the pathname obtained by di. ring the last path element from NAME. It
does not establish whether the pathname Iden,, -a an existing node; only the syntactic
properties of the pathname are examined. This run,.tion also checks the syntactic legality or the
pathname NAME.

Parameters:

NAME Is a pathname (not necessarily Identifying a node).

44

L lmln 
m~ m • m m 

m



31 JA \ 4R) lor,

Exceptions:

NAMEERROR
Is raised If NAME Is a syntactically illegal patbname.

5.1.2.13. Obtaining the name of the last relationship in a pathname

function LAST RELATION (KNE: In NAMESn -ING)
return RELATIONNAKE;

Purpose:

This function returns the name of the relation of the last path element or the pathname NAME.

It does not establish whether the pathname Identifies an existing node; only the syntactic

properties of the pathname are examined. This function also checks the syntactic legality or the
pathname NAME.

Parameters:

NAME Is a pathname (not necessarily identifying a node).

Exceptions:

NAME_ERROR
Is raised If NAME is a syntactically illegal pathname.

5.1.2.14. Obtaining the key of the last relationship in a pathname

function LAsT KEY (NAME: In RAmE_STRzG)
return RELATIONSHIPKEY;

Purpose:

This function returns the relationship key or the last path element or the pathname NAME. It

does not establish whether the pathname Identifies an existing node; only the syntactic
properties of the pathname are examined. This function checks the syntartic legalily or the
pathname NAME.

Parameters:

NAME Is a pathname (not necessarily Identifying a node).

Exceptions:

NAMEERROR
Is raised If NAME Is a syntactically illegal pathname.

5.1.2.15. Qauerying the existence of a node

function is OTAIABLE(NODE: in NOErfpW)

return wOOLEAN;

Purpose:

This function returns FALSE if the node Identified by NODE is unobtainable or Inaccessible. It

returns TRUE otherwise.

45



PRiopo'.FT N1Il,-'T1-C.A1S

Parameters:

NODE is an open node handle Identifying the node.

Exceptions:

STATUISERROR
In raised ir NODE is not an open node handle.

Additional Interfaces:
function ISODTAXNAM.E(AMZ: In RAME EIRING)

return DOLE.AN
is

NODE: MODE TYPE.
RESULT: BOOLEAN;

begin
OPEN (NODE, KNE. (1=>EXISfTENCE));
RESULT := IS OBTAXNABLE (NODE);
CLOSE(NODE);
return RESULT.

exception
when others => return FALSE;

end isowrAsum.;

function XS-OBTATNAU (RASE: In XETyn
KEY: in RELATIONSHIP KeY.
RELATION: In RELATION-NAME : = DEFAIJLT-RELATION)

return 9OLEAx
is

NODEV: OETYPE;
RESULT: OOLYAN;

begin
OPEN(MODE. I&ASE. KEY. RELATION. (1=>EXISTENCE));
RESULT : = IS OSTAIMABLE (NODE);
CLOSE(NODE);
return RESULT;

exception
when others => return FALSE;

end xsOSAaMxAmX;

Notes:
OBTAINABLE can be used to determine whether a node Identified via a secondary relationship
has been made unobtainable by a DELETE operation or Is Inaccessible to the current process
(See Note In Section 5.1.2.3).

5.1.2.16. Queryinit Sameness

function 18SSAME(NODEI: in NODE TYPE;
NODE2: in NODE TYPE)

return 3001-EAR;
Purpose:

This function returns TRUE It the node Identified by its arguments, are the same node;
otherwise, It returns FALSE.

Parameters:

NODEI is an open node handle to a node.

46



PROPOSED MIIqTD-CAI
31 JAN rAY 198',

NODE2 is an open node handle to a node.

ExcepLions.

ZT.NT'USERROR
is raised If at leant one of the node handles, NODEI and NODE2, is not open.

Additional Interface:

function IsftAW(xAxzi: In LANE STRING;
NME: in mAiES iG)

return BOOLEAN

MODE1. MGDE2: NODE TYPE
RESULT: BOOLEAN;

begin
OPEN(NODE1. ,AE1. (1=>EXaSTENCE));
begin

OPEN(NODE2. NAME2. (2=>WrSTECE));
exception

when others =>
CLOSE (NODE1)
raise;

end;
RESULT := IS SAME(NODE1. ODE2);
C.OSE(NODEI);
CL.OSE (NODE2);
return RESULT;

end is suw?;

Notes:

Sameness is not to be confused with equality of attribute values, relationships and contents or
nodes, which Is a necessary but not a sufficient criterion for sameness.

6.1.2.17. Obtaining an open node handle to the parent node

procedure Grr-EPAREm(PArErT: in out NODE TYPE;
OWE: in NME TYPE;
INJENT: In INTENTION := (l=),READ);
TIMELIm: in DUiRATION := NODELAY);

Purpose:

This procedure returns an open node handle In PARENT to the parent node of the node
Identified by the open node handle NODE. The Intent under which the node handle PARENT Is
opened Is specified by INTENT. A call on GET PARENT is equivalent to a call

OPEN(PARENT, NODE, 00, PARENT. INTENT, TIMELIMIT).

Parameters:

PARENT Is a node handle, Initially closed, to be opened to the parent node.

NODE is an open node handle Identifying the node.

INTENT is the intent of subsequent operations on the node handle PARENT.

TIME-LIMIT Is a value or type DURATION, specifying a time limit for the delay on waiting for
the unlocking of the parent node In accordance with the desired INTEINT.

47



PROPO.ED %1L-qTD-CAI

31 JVMARN M-1,

Exceptions:

NAMEERROR
Is raised If the node Identified by NODE is a top-level node or If Its parent node Is

Inaccessible.

USEERROR Is raised If the specifled INTENT Is an empty array.

STATUSERROR
is raised If the node handle PAI'ENT Is open prior to the call or If the node handle

NODE Is not open.

LOCK _ERROR
s raised If the opening of the parent node is delayed beyond the specifled
TIMELIMIT due to the existence of locks in conflict with the specified INTENT.

INTENTVIOLATION
is raised If NODE was not opened with an Intent establishing the right to read
relationships.

ACCESSVIOLATION
Is raised It the current process* discretionary access control rights are insufficient to
obtain aCces% to the parent node with the specified INTENT.

ACCESS VIOLATION is raised only ir the conditions for NAMEERROR are
not present.

SECURITY_ VIOLATION
is raised If the attempt to gain with the specified INTENT access to the parent

node represents a violation or mandatory access controls rot the CAIS.
SECURITY -VIOLATION in raised only if the conditions for other ex.'eptlons are

not present.

5.1.2.18. Copying a node

procedure COPYNODE (ROv: in NODE _W ;
TO ASS: In NODE-TYPE;
TO KEY: In RELATIONsHIP K Y;
TO RELATION: in RELATION NAME

: DFAULT RELATION);
Purpose:

This procedure copies a file or structural node that does not have emanating primary
relationships. The node copied is Identified by the open node handle FROM and s copied to a
newly created node. The new node is Identified by the combination of the TO_ BASE.
TOKEY and TO RELATION parameters. The newly created node is of the same kind as the
node identifled by FROM. Ir the node Is a file node, Its contents are also copied, i.e., a new
copied file Is created. Any secondary relationships emanating from the original node, excepting
the relationship of the predefined relation PARENT (which Is appropriately adjusted), are

recreated In the copy. If the target of the original node's relationship Is the node itself, then the
copy has an analogous relationship to Itself. Any other secondary relationship whose target Is

the original node Is unaffected. All attributes of the FROM node are also copied. Regardless or
,ny locks on the node Identified by FROM, the newly created node is unlocked.

Parameters:



PItI()'.f~31 \JI - T!-( xwl-

FROM is an open node handle to the node to be copied.

TO BASE is an open node handle to the base node for identification or the node to be created.

TO KEY is a relationship key for the Identification of the node to be created

TO RELATION
is a relation name for the identification or the node to be created.

Exceptions:

NAME - ERROR
Is raised if the new node Identification is Illegal or if a node already exists with the

Identification given for the new node.

USE ERROR Is raised if the original node Is not a file or structural node or if any primary
rel:Ltlonships emanate from the original node. USE _ ERROR is also raised If
TO RELATION is the name of a predefined relation that cannot be modified or
created by the user.

STATUSERROR
Is raised If the node handles FROM and TO BASE are not both open.

INTENTVIOLATION

is raised If FROM was not opened with an Intent establishing the right to read
contents, attributes, and relationships or If TO BASE was not opened with an

Intent establishing the right to append relationships. INTENTVIOLATION Is not
raised If the conditions for NAME ERROR are present.

SECURITY_ VIOLATION
Is raised if the operation represents a violation of mandatory acce"s controls and the
condItions for other exceptions are not present.

Additional Interface:
procedure coPY NODE (Fom: in mO-TYPE;

TO: in mAwESTMING)
Is

TO ASE- NDE TYPE;
begin

OPEN (TO BASE, BASE PATH (TO). (%= )APPEND RELATIONSHIPS));
COPY 1ODE(FROM. TO BASE. LASTKEY(TO). LASTRELATION(TO));
0osi (TOIASE) :

exception
when others =>

CLOSE (T BASE);
raise;

end coPY NaDE;

49



PROPOSED %l-STh-CJS

31 J.4NVARI 19M.

5.1.2.19. Copying trees

procedure COrYTREE (P : In NOE TPE;
TODA SE in NODE_TYME.
TO_KEM: in RELATIONsHIP KEY;
TORELATION: in RELATION AME

:=DEFAULT RELATION);

Purpose:

This procedure copies a tree of file or structural nodes formed by primary relationships
emanating from the node Identifled by the open node handle FROM. Primary relationships are
recreated between corresponding copied nodes. The root node of the newly created tree

corresponding to the FROM node is the node Identified by the combination of the TO_ BASE,

TOKEY and TORELATION parameters. If an exception Is raised by the procedure, none of
the nodes are copied. Secondary relationships, attributes, and node contents are copied as

described for COPY _ NODE with the following additional rules: secondary relationships
between two nodes which both are copied are recreated between the two copies. Seeondary

relationships emanating from a node which is copied, but which refer to nodes outside the tree
being copied. are copied so that they emanate from the copy, but still refer to the original target

node. Secondary relationships emanating from a node which is not copied. but which refer to

nodes Inside the tree being copied, are unaffected. If the node identified by TO BASE if part

of the tree to be copied, then the copy of the node identified by FROM will not be copied

recursively.

Parameters:

FROM Is an open node handle to the root node of the tree to be copied.

TO BASE Is an open node handle to the base node for identification of the node to be created
as root of the new tree.

TOKEY Is a relationship key for the identification of the node to be created as root of the
new tree.

TO_ RELATION

Is a relation name for the Identification of the node to be created as root of the new

tree.

Exceptions:

NAMEERROR
Is raised If the new node identifcation Is illegal or If a node already exists with the
Identification given for the new node to be created as a copy or the node identified
by FROM.

STATUSERROR

Is raised If the node handles FROM and TO-BASE are not both open.

USEERROR Is raised If the original node Is not a file or structural node. USE_ ERROR Is also
raised if TO RELATION is the name of a predefined relation that cannot be

modified or created by the user.

LOCK ERROR

Is raised If any node to be copied except the node Identified by FROM. I' locked
against read access to attributes, relationships or contents.

50



PROPOED MIL-TD-( A,

31 JVAt RN 198(

INTENT _VIOLATION
Is raised If FROM is not vi, -n with an Intent establishing the right to read node
contents, attributes and rc-h lonships or if TO _ BASE is not open with an intent
establishing the right to tl end relationships. INTENT _ VIOLATION is only
raised If the conditions for N\ME_ ERROR are not present.

ACCESSVIOLATION
s raised It the current proces' discretionary access control rights are lnsufficient to

obtain access to each node to be copied with Intent READ.
ACCESS VIOLATION s not r:ased if conditions for NAMEERROR are present.

SECURITYVIOLATION
Is raised if the operation represents a violation of mandatory access controls and the
conditions for other exceptions are not present.

Additional Interface:

procedure cOY TRrECrno: in MDETYPE;
TO: In NAME _STRIG)

TO -BASE: WEO TYPE;
begin

OPEN IO RASE. LASE_PATH(1'). (1=>APPENDRELATIONSHIPS));
COPY TRiE(FROM. TOBASE. LASTKEY(TO). LAST RELATION(TO));
CLOSE (TO BNASE);

exception
when others =>

CUSE (TOBASE)
raise;

end coPYTREE;

5.1.2.20. Renaming the primary relationship of a node

procedure REAXE(NODE: in NODE TYPE;
NEW BASE: In NODE TYPE;

Wilt KEY: in RLAIOeNSHIPKEY;
NEW RELATION: in RCLATIONNAME

:DFAULT RELATION);

Purpose:

This procedure renames a Fie or structural node. It deletes the primary relationship to the node
identified by NODE and installs a new primary relationship to the node, emanating from the

node identified by NEW _BASE, with key and relation name given by the NEW KEY and
NEW _RELATION p-,rameters. The parent relationship is changed accordingly. This changes
the unique primary pathname of the node. Existing secondary relationships with the renamed
node as target track the renaming. I.e., they have the renamed node as target.

Parameters:

NODE Is an open node handle to the node to be renamed.

NEW_ BASE Is an open node handle o the bnse node from which the new primary relationship to

the renamed node emanates.

NEW KEY Is a relationship key for the new primary refatlonship.



PROPOSED 611L-TD)-( Al,

31 J%*Nt.kR ) 7,

Parameters:

NODE is an open node handle to a node whose attribute Is to b,, deleted.

ATTRIBUTE Is the name of the attribute to be deleted.

Exceptions:

USEERROR Is raised if the node does not have an attribute of the given name. USEERROR is
also raised If ATTRIBUTE is the name of a predeflned node attribute which cannot
be modified or created by the user.

STATUSERROR
Is raised ir the node handle NODE Is not open.

INTENT VIOLATION
Is raised If NODE was not opened with an Intent establishing the right to write
attributes.

SECURITY VIOLATION
is raised ir the operation represents a violation of mandatory access controls.
SECURITY _ VIOLATION Is raised only if the conditions for other exceptions are
not present.

Additional Interface:

procedure DELETE_NODE_ATTRIBTE (NAME in NAME STRING;

ATTRIBUTE: in ATTRISMTENAME)
in

NODE: NODE TYPE;
begin

OPEN(MODE. NAME. (1=>WRITEATTRIBUTES));
DELETE NODE_ATTRIBSTE (NODE. ArMTIMTE);
CLOSE (MODE);

exception
when others =

CLOSE(NODE).
raise.

end DELETENODEATTRIBUTE,

5.1.3.4. DeletinK path attributes

procedure DELETEPATHt ATIIIBTE(SASE: in NODE TYPE;
RE: in RELATIONSHIPKEY;
RLATION: in RELATIoN NAME

: =DEIAULT RELATION;
ATrMIBUTE: In ATMIBUMENA M);

Purpose:

This procedure deletes an attribute, named by ATTRIBUTE. of a relationship Identified by the
base node BASE, the relation name RELATION and the relationship key KEY.

Parameters:

BASE Is an open node handle to the node from which the relationship emanates.

65



PROPOSED MIL-STD-CAIS

31 JA.NU.ARY J9

ATTRIBUTE is the attribute name.

VALUE is the initial value or the attribute.

Exceptions:

NAME_ ERROR
is raised if the relationship Identified by the BASE, KEY and RELATION
parameters does not exist.

USEERROR is raised if the relationship already has an attribute or the given name or ir the
attribute name given is syntactically Illegal. USE ERROR is also raised If
RELATION is the name of a predefined relation that cannot be modified by the
user. USEERROR is also raised if ATTRIBUTE Is the name of a predefined
relationship attribute which cannot be created by the user.

STATUSERROR
is raised if the node handle BASE is not open.

INTENTVIOLATION
is raised If BASE was not opened with an intent establishing the right to write
relationships.

SECURITY VIOLATION
is raised if the operation represents a violation or mandatory access controls.
SECURITY- VIOLATION is raised only If the conditions for other exceptions are

not present.

Additional Interface:

procedure cOEATEPATHATmim (M E: in NAME_STRING;
ATTRIBUTE: in ATTRIgUTE NAME;
VALME: in LISTWtY)

in
BASE: UWE-TWE;

begin
OPEN(IASE. ASE PATH (NAME). (1=>WRITERELATIONSHIPS));
CREATEPATH ATTRIBUTE (BASE. LASTEY (NAME). LAST-RELATION (NAME).

ATTRIBUTE. VALUE);
CLOSE ASE);

exception
when others =>

CLOSE (AE)
raise;

end c~uTEPAa -ATTrRmIa1;

5.1.3.3. Deleting node attribute@

procedure DLETENODEA1"mIT" (NODE: in NODE "y;
ATTRIMYTE: In ATRISMfENAME);

Purpose:

This procedure deletes an attribute, named by ATTRIBUTE, of the node identified by the open
node handle NODE.

[ 64



31 MM A Juk;

name given Is syntactically Illegal. USEERROR Is also raised if ATTRIIBUJTE is
the name or a predeflned node attribute which cannot be created by the user.

STATUSERROR

is raised if the node handle NODE Is not open.

INTENT_VIOLATION
Is raised If NODE was not opened with an intent establishing the right to append
attributes.

SECURITYVIOLATION
Is raised If the operation represents a violation of mandatory access controls.
SECURITYVIOLATION Is raised only if the conditions ror other exceptions are

not present.

Additional Interface:

procedure CREATE NODEATTRINBUT (NA: in NAMESTRING;
ATTIIMMT : in ATTRIBUTE NAME;
VALUE: in LISr TYPE)

NODE: NODETYPE.
begin

OPEN(MODE, NAME. (1=>APPEN _ATTRIJRiT S)):
EATENODE ATT IBLTE( SDE. ATIRIJEr". VALUE);

CLOSE (NODE);
exception

when others ->
O..OSE (MDE).
raise;

end EATE _N EAT'RIBMEJs

8.1.3.2. Creating path attributes

procedure REATE PATH A 'IM (RASE : In NODE TYPE;
KEY: In RELATIONSHIP KEY;
RELATION: In RELATION NAME

:=DEFAULT RELATION;
ATTRIBUfTE: in ATTRIBUTE NAME;
VALUE: in LISTTrPE);

Purpose:

This procedure creates an attribute, named by ATTRIBUTE, of a relationship and sets Its Initial
value to VALUE. The relationship is identified by the base node identified by the open node

handle BASE, the relation name RELATION and the relationship key KEY.

Parameters:

BASE is an open node handle to the node from which the relationship emanates.

KEY is the relationship key or the affected relationship.

RELATION Is the relation name of the affected relationship.

63



PROPOSED M IL- STL)-C At-

31 Jt .AR) 19X5

ACCESS VIOLATION
Is raised If the current process' discretionary access control rights are Insufflicient to
obtain access to the current node with the specifled INTENT.
ACCESSVIOLATION Is raised only If the conditions for NAMEERROR are

not present.

SECURITY VIOLATION
Is raised If the operation represents a violation of mandatory access controls.
SECURITYVIOLATION is raised only If the conditions other exceptions are not
present.

Notes:

The call on GET CURRENTNODE is equivalent to OPEN(NODE, "'CURRENT NODE",
(INTENT.TIME-LIMIT)).

6.1.3. Package ATTRIBUTES

This package supports the definition and manipulation of attributes for nodes and relationships. The

name of an attribute follows the syntax of an Ada identifier. The value of each attribute is a list; the
format of the list is deflned by the package LISTUTILITIES (see Section 5.4). Upper and lower case

distinctions are not significant within the attribute names.

Unless stated otherwise, the attributes predefined by the CAIS cannot be created, deleted or modified
by the user.

The operations defined for the manipulation of attributes identify the node to which an attribute
belongs either by pathname or open node handle. They Implicitly identify a relationship to which an

attribute belongs by the last path element of a pathname or explicitly Identify the relationship by
base node, key and relation name Identification.

5.1.3.1. Creating node attributes

procedure CEATE_NOE._"rARImrE (NODE: in NODETYPE;

AT RIBUTE: in ATTRIBUTENAME;
VALUE: in LISTTYPE);

Purpose:

This procedure creates an attribute named by ATTRIBUTE of the node Identified by the open
node handle NODE and sets Its initial value to VALUE.

Parameters:

NODE Is an open node handle to a node to receive the new attribute.

ATTRIBUTE Is the name of the attribute.

VALUE Is the Initial value of the attribute.

Exceptions:

USE-ERROR Is raised if the node already has an attribute of the given name or If the attribute

62



PROPOSED MlL-qTD-(.AdI

31 JANIAR) 198.5

SECURITY VIOLATION
is raised if the operation represents a violation of mandatory access controls.

SECURITY VIOLATION is raised only If the conditions for other exceptions are
not present.

Additional Interface:

procedure SET CmREx NODE(NAM: in NAmE sTIrN)
Is

r Ir 1: NODE TYPE;
beein

OPEN(NODE. NAME. (1=>EagTENCE));
ET CURRENTNODE (NODE).

exception
when others =>

CLOSE (NME);
raise;

end sETcUmRETNoDE;

5.1.2.30. Opening a node handle to the current node.

procedure GET RExTNoDE (*E: In out NOE TYPE;
INTENT: In INTENTION:=

(1=>EXISTC) ;

TIME LIMIT: In DuRATION : =NODELAY);

Purpose:

This procedure returns In NODE an open node handle to the curren node or the current
process; the Intent with which the node handle is opened as specil d by the INTENT
parameter.

Parameter:

NODE is a node handle, Initially closed, to be opened to the current node.

INTENT is the Intent of subsequent operations on the node handle NODE.

TIME LIMIT is a value of type DURATION specifying a time limit for the delay on waiting for
the unlocking or the node in accordance with the desired INTENT.

Exceptions:

NAMEERROR
is raised If the current node Is Inaccessible or If It is unobtainable and the INTENT
Is anything other than EXISTENCE.

USEERROR is raised If INTENT Is an empty array.

STATUSERROR
Is raised If NODE Is an open node handle prior to the call.

LOCKERROR

is raised If access, with Intent READ_ RELATIONSIHIPS, to the current process

node cannot be obtained due to an existing lock on the node.

81



31 JASNARN 1IMs

INTENT is the Intent of subsequent operations on the node handle NEXT NODE.

TIME_LIMIT is a value of type DURATION, specifying a time limit for the delay on waiting for
the unlocking of the node In accordance with the desired INTENT.

Exceptions:

NAMEERROR
Is raised If the node whose node handle Is to be returned in by NEXTNODE is
unobtainable and If the INTENT Includes any Intent other than FXSTENCE.

USEERROR is raised if the ITERATOR has not been previously set by ITERATE or if the
Iterator Is exhausted (i.e.. MORE (ITERATOR)=FALSE) or If INTENT is an

empty array.

LOCKERROR
is raised if the opening of the node Is delayed beyond the specified TIME LIMIT
due to the existence of locks in conflict with the specified INTENT.

ACCESS- VIOLATION
Is raised If the current process' discretionary access control rights are insufficient to
obtain access to the next node with the specified INTENT. Access Violation is

raised only If the conditions for NAMEERROR are not present.

SECURITY VIOLATION
is raised if the current process' attempt to obtain access to the next node with the
specified INTENT represents a violation or mandatory access controls for the CAIS.
SECURITY VIOLATION Is raised only if the conditions for other exceptions are

not present.

5.1.2.29. Settinit the current node relationship

procedure 8? CtMRTirr E1ME ( : in nOzD TrPE);

Purpose:

This procedure specifies the node Identified by NODE as the current node. The relationship or
the predefined relation CURRENT_ NODE of the current process Is changed accordingly.

Parameters:

NODE Is an open node handle to a node to be the new target or the CURRENT NODE
relationship emanating from the current process node.

Exceptions:

STATUS-ERROR
is raised If the node handle NODE is not open.

LOCK - ERROR
Is raised if access, with Intert WRITE_ RELATIONSHIPS, to the current process
node cannot be obtained due to an existing lock on the node.

60



31 JN%%N R'I 1011.

WE.ATI ON: in RELATioNN-aMEPArrm.
DEALT RELATION:

PRINARY ONLY: in INOLEAN := TREFE)
is

NODE: NODE TYPE:
begin

OPEN (NODE. K AME. (I=>READ RNLATIONU(IPS));
rItEATE('TERATm. NODE. KIND. KEY, RELATION. Pitimay ONLY);
CLOSE (NUWE);

excception
when others

CLOSE (NODE)
raise;

end nENATE;

Notes:
The functions PATH_-KEY and PATHRELATION may be used to determine the relationship
which caused the node to be Included In the Iteration. The Iteration Interfaces can be used to
determine relationships to Inaccessible or unobtainable nodes.

6.1.2.27. Determining iteration statuo

function UMN (TRATOR: in ODE ITEATOR)
return DOOLEAN.

Purpose:

The function MORE returns FALSE if a nodes contained in the node Iterator have been
retrieved with the GET_ NEXT procedure; otherwise It returns TRUE.

Parameters:

JTERATOR Is a node iterator previously set by the procedure ITERATE.

Exceptions:

USE_-ERROR is raised if the ITERATOR has not been previously set by the procedure ITiIIATE.

5.1.2.28. Gettingt the next node in an iteration

procedure GET NERT(ITERATORt: In out UODE - TEATOR.
N1M NODE: In out NODE TYPE;
iNTENT: In INTENTION :Ci=)-VaSTENCE);
TIM LIM In DWATION :NO DELAY);

Purpose:

The procedure GET-NEXT returns an open node handle to the next node In the parameter
NEXTNODE; the Intent under which the node handle is opened is specified by the INTENT
parameter. If NEXT_-NODE is open prior to the call to GET NFXT, It Is closed prior to being
opened to the nexi node. A time limit can be specified for the maximum delay permitted if the
node to be opened Is locked against access with the specified INTENT.

Parameters:

ITERATOR Is a node iterstor previously set by ITERATE.

NEXTNODE
io a node handle to be opened to the next node on the ITERATOR.



PROPOSED NfIL-STD-CAIS

31 J.'NUAR) 1965

relationship key. The effect on existing Iterators or creation or deletion of relationships Is
impiemen tation-defined .

6.1.2.26. Creatinit an iterator over node.

procedure rTERATE (I'TATUR: out NWEZ flATUR;
NM: In NODE TYPE;

KIND: in WE IN JD:
KEY: in RELATiONSIp KYPATrzUN
RELATION: in RELATzON mki PATTUNu

:- DIWALT RMlATION;
PRIMRY OILY: tin DOLAN :a~ TIME);

Purpose:

This procedure establishes a node iterator ITERATOR over the set of nodes that are the target-,
of relationships emanating from a given node identified by NODE and matching the specified
KEY and RELATION patterns. Nodes that are of a different kInJ than the KIND specified are
omitted by subsequent calls to GET -NEXT using the resulting ITERATOR. If
PRBMARYONLY is true, then the iterator will be based on only primary relationships.

Parameters:

ITERATOR Is the node Iterator returned.

NODE is an open node handle to a node whose relationships form the basis for constructing
the iterator.

KIND) is the kind of nodes on which the iterator Is based.

KEY Is the pattern for the relationship keys on which the iterator Is based.

RELATION Is the pattern for the relation names on which the iterator is based.

PRIMARYONLY
Is a boolean; if TRUE, the iterator will be based on only primary reiationships; If
FALSE.the iterator wiil be based on all relationships satisfying the patterns.

Exceptions:

USE_ ERROR Is raised If the pattern given In KEY or RELATION Is syntactically Illegal.

STATUSERROR
Is raised If NODE Is not an open node handle.

INTENT_ V1O1ATION
In raised It NODE was not opened with an Intent establishing the right to read
relationship.

Additionai Interface:

procedure xitRATE (mitATuit: out NOE rtflT;
KANE: in LUMmiG;
KIND: Ini NODE KIND;
KEY: In RELATIONSHIP KEYV PATTERN :



PROPOSED 411,-'TD-( 'ki
-

RELATION is the relation name or the relationship to be deleted.

Exceptions:

NAMEERROR

is raised If the relationship identified by BASE. KEY and RELATION does not
exist.

USE-ERROR is raised If the specified relationship Is a primary relationship. USE_ ERROR is
also raised If RELATION Is the name of a predefined relation that cannot be

modified or created by the user.

STATUSERROR

Is raised if the BASE is not an open node handle.

INTENT VIOLATION

is raised If BASE was not opened with an intent establishing the right to write
relatior ships.

SECURITYVIOLATION
is raised If the operation represents a violation of mandatory access controls.

SECURITYVIOLATION is raised only if the conditions for other exceptions are
not present.

Additional Interface:

procedure uNLiNK(mAME: in NAmE_sTRzNG)

BASE: NODE-n " ;
begin

OPE(BASE. UBSE.PATHIMAIM). (1=>WRITE RELATIONSHIPS));
IJNLIXK(ASE. LAST KEY(NAM). LAST-RELATION(NAM));
LOSE(MASE);

exception
when others =>

CLOSE (ABE)
raise;

end uminU;

Notes:

UNLINK can be ued to delete secondary relationships to nodes that have become unobtainable.

5.1.2.25. Node iteration types and subtypes

type NOE_rrmATO in limited private.
subtype RmlATzONSHzP KEy -PATTERN I RELATIONSHIP Y;
subtype RELATIONNAMEPArTrIN is RELATION i wE;

These types are used in the following interfaces for lterating over a set of nodes.
RELATIONSHiIP KEY PATTERN and RELATIONNAM E_PATTERN follow the syntax or
relationship keys and relation names, except that '?' will match any single character and '*' will match
any string of characters. NODE_ ITERATOR Is a private type as.Sumed to contain the bookkeeping
Information necessary for the Implementation or the MORE and GET _ NFXT functions. The nodes
are returned by GET NEXT in ASCII lexicographical ,order by relation name and then by

57



PRQPONEt) kMIL-STD-C-,AS

31 JANUARN 1985

NAMEERROR
is raised If the relationship key or the relation name are Illegal or If a node already

exists with the Identification given by NEWBASE, NEW _KEY, and
NEWRELATION.

USEERROR Is raised if NEWRELATION Is the name of a predefined r ation that cannot be

modified or created by the user.

STATUS_ERROR
Is raised if the node handles NODE and NEWBASE are not open.

INTENT- VIOLATION
is raised if NEW BASE was not opened with an intent establishing the right to

append relationships.

SECURITY VIOLATION
Is raised it the operation represents a violation of mandatory access controls.
SECURITY- VIOLATION Is raised only If the conditions for other exceptions are

not present.

Additional Interface:

procedure LIm(NODE: In NODETYPE;
NEWKAME: in NAJESTIUNG)

NEW BASE: NOETYPE;
begin

OPEN(NEW BASE. BASE PATH(NE NAME). (1=>APPED_RELATIONSH IPS));
LINK (NoDE. mE BAsE7 LAsT KEY_ xEW NAm),

LASTRELATION (NEW ME));
CLOSE (NV BASE);

exception
when others =>

CLOSE(NEW BASE)
raise;

end LINK;

5.1.2.24. Deleting secondary relationships

procedure uNLmIN(BasE: In NODE TYPE;
KEY: In RELATIONSHIP _MY;
RELATION: In RELATION NAME

: iDEFAULTiELATION);
Purpose:

This procedure deletes a secondary relationship Identified by the BASE, KEY and REIATION

parameters.

Parameters:

BASE Is an open node handle to the node from which the relationship emanates which is

to be deleted.

KEY Is the relationship key of the relationship to be deleted.

56



PROPOSfED NIL-TI .( AI

31 JNI AR) iW

ACCESSVIOLATION
Is ruised If the current proes does not have sufficient discretionary access control
rights to obtain access to the parent of the node speciried by NODE with Intent
WRITE RELATIONSHIPS or to obtain access to any target node of a primary

relationship to be deleted with Intent EXCLUSIVEWRITE and the conditions for

NAMEERROR are not present.

SECURITY VIOLATION
Is raised If the operation represents a violation of mandatory access controls.

SECURITY_ VIOLATION Is raised only if the conditions for other exceptions are

not present.

Additional Interface:

procedure DELETE-TREE (NAME: in XANE SMG)
is

NODE: NE TYPE;

begin
OPEN (NODE. KANE. (E:CLULSIVE RITE.RRADRELATIONSHPS));
DELETE TREE (NOE);

exception
when others =>

CLOSE (NODE)
raise;

end DELETETREE;

Notes:

This operation can be used to delete more than one primary relationship In a single operation.

5.1.2.23. Creating secondary relationships

procedure LiNX (NODE: in NODE TYPE;
NEW 1ASE: In NODE TYPE;
MEYM: in RLATIONmHP_ KEY;

Nw RELATIOx: in RELATION NAXE
:=DE17AULT RELATION);

Purpose:

This procedure creates a secondary relationship between two existing nodes. The procedure

takes a node handle NODE on the target node. a node handle NEW_ BASE on the source node.
and an explicit key NEW _KEY and relation name NEWRELATION for the relationship to
be established from NEWBASE to NODE.

Parameters:

NODE Is an open node handle to the node to which the new secondary relationship points.

NEWBASE Is an open node handle to the base node from which the new secondary relationship

to the node emanates.

NEWKEY Is the relationship key for the new secondary relationship.

NEWRELATION

Is the relation name for the new secondary relationship.

Exceptions:



PROPOSED M1I.STD-CA S

31 J 'ARY 19M-5

NODE: NODE TYPE;
begin

OPEN(O E. RAE. (EXCLtS!VE WRITE.READR ELATIOSHIPS));
DELETENODE (NODE);

exception
when others =>

a.s(OME) ;
raise;

end DELErENODE;

Notes:

The DELETENODE operations cannot be used to delete more than one primary relation node

in a single operation. It Is left to an Implementation decision whether and when nodes whose
primary relationships have been broken are actually removed. However, secondary relationships

to such nodes must remain until they are explicitly deleted using the UNLINK procedures.

6.1.2.22. Deleting the primary relationships of a tree

procedure DELETETREE (NODE: in out NODE_TYP);

Purpose:

This procedure effectively performs the DELETENODE operation for a specifled node and
recursively applies DELETE_ TREE to all nodes reachable by a unique primary pathname from

the designated node. The nodes whose primary relationships are to be deleted are opened with
Intent EXCLUSIVE_ WRITE, thus locking them for other operations. The order in which the
deletions of primary relationships Is performed Is not specified. If the DELETETREE

operation raises an exception, none of the primary relationships is deleted.

Parameters:

NODE is an open node handle to the node at the root or the tree whose primary
relationships are to he deleted.

Exceptions:

NAME_ ERROR

Is raised If the parent node of the node Identified by NODE or any of the target

nodes of primary relationships to be deleted are Inaccessible.

USE ERROR Is raised If the primary relationship to the node Identified by NODE belongs to a

predefined relation that cannot be modified by the user.

STATUS -ERROR

is raised If the node handle NODE In not open prior to the call.

LOCKERROR

Is raised If a node handle to the parent or the node specified by NODE cannot be

opened with Intent WRITERELATIONSHIPS or If a node handle Identifying any
node whose unique primary path traverses the node identified by NODE cannot be
opened with Intent EXCLUSIVEWRITE.

INTENT VIOLATION
is raised Ir the node handle NODE was not opened with an intent Inchding

EXCLUSIVE_WRITE and READ REI.ATIONSIIIPS.

54



PROPOsED MI'TD-. \I-

31 JANI ARN' M ,

raise;

end WwXrA.;

Notes:

Open node handles from existing processes track the renamed node.

6.1.2.21. Deleting the primary relationship to a node

procedure DELETE NOtD (NODE: in out NowE TYPE);

Purpose:

This procedure deletes the primary relationship to a node identified by NODE. The node
becomes unobtainable. The node handle NODE is closed. If the node s a process node and the
process is not yet TERMINATED (see Section 5.2), DELETENODE aborts the process.

Parameters:

NODE is an open node handle to the node which Is the target of the primary relationship

to be deleted.

Exceptions:

NAME-ERROR
is raised If the parent node or the node identified by NODE is Inaccessible.

USEERROR is raised If any primary relationships emanate from the node.

STATUSERROR

Is raised If the node handle NODE Is not open prior to the call.

LOCKERROR
Is raised If access, with intent WRITE_ RELATIONSHIPS, to the parent or the
node to be deleted cannot be obtained due to an existing lock on the node.

INTENTVIOLATION
Is raised If the node handle NODE was not opened with an intent including

EXCLUSIVEWRITE and READRELATIONSHIPS.

ACCESS VIOLATION

is raised If the current process does not have sumcient discretionary access control
rights to obtain access to the parent of the node to be deleted with Intent
WRITERELATIONSHIPS and the conditions for NAMEERROR are not

present.

f

SECURITYVIOLATION
is raised if the operation represents a violation of mandatory access controls.
SECURITY VIOLATION Is raised only If the conditions for other exceptions are

not present.

Additional Interface:

procedure DELE-TwOD(mmi: In MANE Snli )

I3



PR~OPOS~ED N11LTD-CAJS
31 JANVARfl 19&

NEWRELATION
Is a relation name for the new primary relationahip.

Exceptions:

NAMEERROR
Is raised If the new node Identification Is Illegal or if a node already exists with the
Identification given for the new node.

USE ERROR Is raised it the node Identified by NODE is not a file or structural nmie or it the
renaming cannot be accomiplished while still maintaining acircularity or primary
relationships (e.g., It the new parent node would be the renamnd node).
USEERROR is also raised ir NEWRELATION is the name of a predeflned
relatIon tbat cannot be modifled or created by the user or If the primary

relationship to be deleted belongs to a predefined relation that cannot be modified
by the user.

STATUS -ERROR

Is raised If the node handles NODE and NEW-BASE are not open.

LOCKERROR
Is raised If access, with Intent WRITE_ RELATIONSHIPS, to the parent or the
node to be deleted cannot be obtained due to an existing lock on the node.

INTENT_-VIOLATION
Is raised If NODE was not opened with an Intent establishing the right to write
relationships or If NEW_-BASE was not opened with an Intent establishing the
right to append relationships.

ACCESS_-VIOLATION
Is raised If the current process does not have sufficient discretionary access control
rights to obtain access to the parent of the node to be renamed with Intent
WRITE_ RELATIONSHIPS and the conditions ror NAME_ ERROR are not
present.

SECURITY_-VIOLATION
is raised Ir the operation represents a violation or mandatory acess controls.
SECURITY- VIOLATION Is raised only ir the conditions for other exceptions are
not present.

Additional Interface:

procedure REHAHE(NOE: In NODE TYPE;
NEW NAME: in NAME-STING)

is
NEW BASE: NODE TYPE;

beein--
OPEN(NEW BASE. BAkSE PATII(NEV NAME). (1=>APPEMD RELATIONSHIPS)).
REMAME (MODE. NEWDBASE. LAST-KEY(KEV NAME).

LAST RELATI ON (NEW NAME)).
CLOSE (NEW BABE);

exception
when others ->

CLOSE (NEW BASS)

52



PROPOS~ED kMlL-',TD-( 40,

31 JANUAR 198.5

Parameters:

NODE Is an open node handle to a node the value of whose attribute named by
ATTRIBUTE is to be set.

ATTRIBUTE Is the name or the attribute.

VALUE Is the new value of the attribute.

Exceptions:

USEERROR is raised if the node has no attribute or the given name. USEERROR Is also
raised ir ATTRIBUTE is the name of a predefined node attribute which cannot be

modified by the user.

STATUSERROR

is raised if NODE is not an open node handle.

INTENTVIOLATION

is raised If NODE was not opened with an intent establishing the right to write
attributes.

SECURITYVIOLATION
is raised if the operation represents a violation of mandatory access controls.

SECURITY VIOLATION Is raised only If the conditions for other exceptions are
not present.

Additional Interface:

procedure SET_NME_A1RItrJE(RAwE: in _AMESTRING;
ATtRIBUTE: in AT7RIBUEKAM E;
VALUE: in LISTTYPE)

NODE: NODE 1!PE;
begin

OPEN(NODE, NAME. (=>WRI'TE.ATTRI9tVES));
SET NODE ATRIT (NODE, ATmIBUTE. VALUE);
CLOSf E E);

exception
when others ->

CLOSE (NODE):
raise;

end SETNODE AR7RIJTE.

6.1.3.6. Setting path attributes

procedure SET PATH ATTRIMtE(BSE : In NODE-TWP;
KEY in RELATIONSHIPXEY;

RELATION : in RELATION NAxE
:=DEFAULT RELATION;

AmYismfl: in ArrtiRMJT KNE;
VALUE : In LIST TYPE);

Purpose:

This procedure sets the value of the relationship attribute named by ATTRIII TI to the value

67



PROPOSED MflI-STD-CAIS

31 JANI.ARI 195

specified by VALUE. The relationship Is identified explicitly by the base node BASE, the
relation name RELATION and the relationship key KEY.

Parameters:

BASE is in open node handle to the node from which the relationship emanates.

KEY Is the relationship key of the affected relationship.

RELATION is the relation name of the affected relationship.

ATTRIBUTE Is the name of the attribute.

VALUE Is the new value of the attribute.

Exceptions:

NAMEERROR
Is raised If the relationship Identified by the BASE, KEY and RELATION
parameters does riot exist.

USEERROR Is raised ir the node does not have an attribute of the given name. USE_-ERROR
Is also raised If RELATION is the name of a predefined relation that cannot be
modified by the user. USEERROR is also raised If ATTRIBUTE is the name or a
predefined relationship attribute which cannot be modified by the user.

STATUSERROR
Is raised If the node handle BASE Is not open.

INTENT_-VIOLATION
Is raised It BASE was not opened with an Intent estabiishing the right to write
relationships.

SECURITY_-VIOLATION
Is raised It the operation represents a violation of mandatory asess controls.
SECURITY_ VIOLATION Is raised oniy if the conditions for other exceptions are
not present.

Additional Interface:

procedure SETPATH ArrtrIKfEmAmi: In NtAimESritNG
AxrRIEJ: in ATrmisJTE NAmE;
VALUE: in LIST TYPE)

LASE: NODE TYPE;
begin

OPEN(BASE. LASE PATH(NAME). (1=WRrE RELATIONM1IPS));
SET PATH ATTN iMITE(BASE. LAsT KEYw(NA). LAsT RELAToION(AxE).

ATRBUTE.* VALUE);
CLOSE (BASE);

exception
when others =>

CLOSE (BASE)
raise;

end SET PATH ATflRX ITE;



PROO'ED) kIllTD-4 M,

5.1.3.7. Getting node attributes

procedure =Tr -*wE) ArITE (mE: in NODETyr;
ATTRIBUTE: In ATTRIBUTE NAME;
VALUE: in out LISTTYP);

Purpose:
This procedure returns the value of the node attribute named by ATTRIBUTE In the parameter
VALUE. The node Is Identified by open node handle NODE.

Parameters-

NODE is an open node handle to a node the value of whose attribute ATTRIBUTE is to be
retrieved.

ATTRIBUTE Is the name of the attribute.

VALUE is the result parameter containiny .hc value of the attribute.

Exceptions:

USEERROR Is raised if the node has no attribute of name ATTRIBUTE.

STATUSERROR
is raised it NODE is not an open node handle.

INTENT VIOLATION
Is raised If NODE was not opened with an Intent establishing the right to read
attributes.

Additional Interface:

procedure GET NODEATrWiBuTE (KmE: in NAJMSTRING;
ATTRIBUTE: In ATTRIBUTE NAME;
VALUE: in out LISTTYPE)

is
NODE: NODETYPE;

begin
OPEN(NODE. NAME. (1=>READATTRIPJTES));
GET NODE_ATIRIBrE(NoDE, ATTRIBJTE. VALUE);
CLOSE (NODE);

exception
when others =>

CLOSE (NODE);
rame;

end GENODEATTRI3MTE;

5.1.3.8. Getting path attributes

procedure GET PATh.ATTRIWTE (BASE: In NODE.YYPE;
KEY: In RELATIONSHIP KEY;
RELATION: in RELATION NAME

:=DEFAULT RELATION;
ATTRIBUTE: In ATTRIire AMME;
VALUE: In out LIST TYPE);

Purpose:

69



PROPO"ED %fIL-STD-C.JS

31 JANTARY 19&5

This procedure assigns the value of the relationship attribute named by ATTRIBUTE to the
parameter VALUE. The relationship is Identified explicitly by the base node BASE. the relation

name RELATION and the relationship key KEY.

Parameters:

BASE is an op'n node handle to the node from which the relationship emanates.

KEY Is the relationship key or the accessed relationship.

RELATION Is the relation name of the accessed relationship.

ATTRIBUTE is the name of the attribute.

VALUE is the result parameter containing the value of the attribute.

Exceptions:

NAMEERROR

is raised If the relationship Identified by the BASE, KEY and RELATION

parameters does not exist.

USE ERROR is raised if the relationship does not have an attribute of the given name.

STATUSERROR
is raised If the node handle BASE is not open.

INTENT_ VIOLATION
Is raised If BASE was not opened with an Intent establishing the right to read

relationships.

Additional Interface:

procedure GETPATHATTRIBUTE (mAME: In NAMESTRING;
ATTRIBME: in ATTRIBUTE NAME;
VALUE: In out LIST'TYPE)

BASE: OWE-TYPE;
begin

OPEN(BASE. BASEPATH(NAME). (1=>READ RELATIONSHIPS));

GET-PATHATTRIBUIE (BASE. LASTKEY (NAME). LASTRE.ATION (NAME).
ATTRIMUTE. VALUE);

CLOSE (BASE);
exception

when others ->
CLOSE (BASE)
raise;

end GETPATHATTRIPMafE;

70



PROPOSED N1ILST-( AIS

31 JANUAP) 198.1

5.1.3.9. Attribute iteration types and subtypes

subtype ATrmrisE NA E Is rrRimG:
type ATrRIBITIDAT1 R is limited private;
subtype AJTRIlJTPATrlDN is sTRNG;

These types are used In the following Interfaces for iteration over a set of attributes of node-s or
relationships. ATTRIBUTE_ NAME Is a subtype for the names of attributes. An
ATTRIBUTEPATTERN has the same syntax as an ATTRIBUTENAME. except that *?" will
match any single character and '0' will match any string of characters. ATTRIBUTE ITERATOR is

a private type assumed to contain the bookkeeping information necessary for the Implementation of
the MORE and GETNEXT functions. The attributes are returned by GETNEXT In ASCII
lexicographlcal order by attribute name. The effect on existing Iterators of creation or deletion of
attributes or relationships is Implementation-denned.

6.1.3.10. Creating an iterator over node attributes

procedure NODEATTRIYIi TERATE (ITERAToR: out ATTRIBLTE rTERATR;
NDE: in NODETYPE;
PATITEN: in ATTRIBUTE PATTERN

Purpose:

The procedure NODEATTRIBUTEITERATE returns In the parameter ITERATOR an
attribute Iterator according to the semantic rules for attribute selection given In Section 5.1.3.9.

Parameters:

ITERATOR is the attribute Iterator returned.

NODE is an open node handle to a node over whose attributes the Iterator Is to be
constructed.

PATTERN Is a pattern for attribute names as lescribed in Section 5.1.3.9.

Exceptions:

USEERROR Is raised If the PATTERN is syntactically Illegal.

STATUSERROR

is raised if NODE is not an open node handle.

INTENT _VIOLATION
Is raised if NODE Is not open with an Intent establishing the right to read
attributes.

Additional Interface:

procedure NODEArrRIPUrEITERATECITERATOR: out AmI"TITErIERAT; R
NAME: in NAME WIRING;
PATTERN: in AIRIBLITEPATTERN

NODE: NODETYPE;
begin

71



PROPOSED MIL-STD.CAIS

31 JANE"ARY~1985

OPEN(NODE. KANE. (1=READ ATTRIOPJTES));
NODEArritIMffE iTEATEa(TiRATaR. NODE. PATrflN);
CLOSE (NODE);

exception
when others =>

CLOSE (NODE)
raise;

end 160E ATISMEFITEATE;

Notes:
By using the Pattern .** it Is possible to Iterate over all attributes or a node.

5.1.3.11. Creatinit an iterator over relationship attributes

procedure PATH ATTRim=JTEtnATE (rrEAToR: out A11aIMMrERfATOR;
BASE: In UODE-TYPE;
KEY: in RELATIONSHIP-KEY;
RELATION: in RELATION NAME

: DEFAULT RELATION;
PATIURN: In ATrMIE3TEPATER

Purpose:

This procedure Is provided to obtain an attribute Iterator for relationship attributes. The
relationship Is identifled explicitly by the base node BASE. the relation name RELATION and
the relationship key Ki-'Y. The procedure returns an attribute Iterator In ITERATOR according
to the semantic rules for attribute selection appied to the attributes of the Identified
relationship. This iterator can then be processed by means or the MORE and GE-T NEXT
Interfaces.

Parameters:

ITERATOR Is the attribute iterator returned.

BASE Is an open node handle to the node from which the reiationship emanates.

KEY is the relationship key of the affected relationship.

RELATION is the relation name of the affected relationship.

PATTERN Is a patlern for attribute names (see Section 5.1.3.9).

Exceptions:

NAMEERROR
Is raised If the relationship Identified by the BASE, KEY and RELATION
parameters does not exist.

USE_-ERROR Is raised if the PATTERN Is syntactically Illegai.

STATUSERROR
Is raised If BASE Is not an open node handle.

INTENT_-VIOLATION
In raised If BASE was not opened with an Intent establishing the right to read
relationships.

72



PROPO.EFD %llL-TD-Cdl

31 J A\ N't R OW

Additional Interface:

procedure PATH ATTIBUTE ITRATE (IUATOR: out ATRMIBMTE TATOR;
NAME: In NAME TRMING;
PATIUN In ATrRIBUTE-PAWEUN

IN
EASE: NOE TYIPE;

begin
OPEN (BASE. EASE PATH (NME). (1=READ RELATIONSHIPS));
PATh ATTR~iwmTE TATE (rTmATOR. EAsE. LAnSTE (NME).

LAST RELATION (NAME). PATZUN);
CaOUsE(AS);

exception
when others =>

COBE (BASE);
raise;

end PATH A1IritInimE ATE;

5.1.3.12. Determining iteration status

function MORE(ITDATVR: In ATTRIBUTE ITEATOR)
return BOOLEAN;

Purpose:

The function MORE returns FALSE It all attributes contained In the attribute Iterator have
been retrieved with the procedure GET-NEXT; otherwise, it returns TRUE.

Parameters:

ITERATOR is an attribute iterator previously constructed.

Exceptions:

USE_ ERROR is raised If the ITERATOR has not been previously set by the procedures
NODE_-ATTRIBUTE_-ITERATE or PATH_-ATTRIBUTE_ ITERATE.

5.1.3.13. Getting the next attribute

procedure GET N=T(TlATaR: in out ATRIW.TrTE ATolt;
ATTRIBMT: out ATTRIBUTENAM;
VALUE: in out LIST TYPE)

Purpose:
The procedure GET_-NEXT returns, In its parameters ATTRIBUTE and VALUE. both the
name and the value of the next attribute In the Iterator.

Parameters:

ITERATOR Is an attribute Iterator previously constructed.

ATTRIBUTE Is a result parameter containing the name or an attribute.

VALUE Is a result parameter containing the value of the attribute named by ATTRIBUTE.

Exceptions:

USE_ ERROR Is raised If the ITERATOR has not bepn previously set by the procedures

73



PROPOSED NIIL-STD-( AJS
31S J&.N 'Ar11 198

NODEATTRIBUTEITERATE or PATHATTRIBUTEITERATE or if the
Iterator is exhausted, I.e.. MORE(ITERATOR)= FALSE.

5.1.4. PackaMe ACCESS-CONTROL

This package provides primitives for manipula:.ing discretionary access control Information for CAIS
nodes. In addition, certain CAIS subprograms declared elsewhere allow the specification or initial
access control Information. The CAIS specifies mechanisms for discretionary and mandal',ry access
control (see [TCSEC). These mechanisms are only recommendations. Alternate discretionary or
mandatory access control mechanisms can be substituted by an Implementation provided that the
semantics or all Interfaces In Section 6 (with the exception of Section 5.1.4) are Implemented as
specified.

5.1.4.1. Subtypes

subtype mRaTv ALuE is CA8.MLISTrrTLTrMES.XSTTYE;

GRANTVALUE is a subtype for values of GRANT attributes; It is a list in the syntax described In

Table II.

5.1.4.2. Setting acces control

procedure sr AcCEsS coWroL(NODE: in NODE TYP;
ROLE WME: In NODETYPE;
GrANT: In GRA rrVALUE);

Purpose:
This procedure sets access control Information for a given node. If a relationship of the
predefined relation ACCESS does not exist from the node Identified by NODE to the node

key Is created from the node specified by NODE to the node specifei by ROLE_NODE. If
necessary, the predefined attribute GRANT Is created on this relationship. The value of the
GRANT attribute Is set to the value of the GRANT parameter (see Table I for the syntax).
The effect is to grant the access specified by GRANT to processes that have adopted the role
ROLENODE.

Parameters:

NODE Is an open node handle to the node whose access control Information is to be set.

ROLE NODE
Is an open node handle to the node representing the role.

GRANT Is a list describing what access rights can be granted.

Exceptions:

USEERROR is raised if GRANT is not In valid syntax.

STATUSERROR
Is raised If NODE and ROI,_NODE are not both open node handles.

INTINTVIOLATION
Is raised if NODE was not opened with Intent CONTROL.

74



PROPOSM N11L-STID-(AI1.

31 JANUARY iU8

SECURITYVIOLATION
is raised if the operation represents a violation or mandatory aceess controls.
SECURITY_-VIOLATION Is raised only If the conditions for other exceptions are
not present.

Additional Interface:

procedure sET ACCESSCOmTOL(NAmE: in NAJM STRING,
ROLE NMEM: in NAME STRING;

RAJ1T: In GRAJ1rVAWE)

NOR. ROLE NOIE: ID TYPE;
begen

OPEN(NODE. MAW. (1=)CONTRL));
OMEN(ROLE NODE. ROLE NAJM. (1=>ExxSTEWcE));
SET ACCESS C011TROL (NODE. ROLE NODE. GRANT);
CLOiE (NODE)
CLOSE (ROLE NODE);

exception
9 when others =>

CLOSE (NDE) ;
C.OSE (ROLE ODE);
raise;

end sEr ACCEss coimoL;

5.1.4.3. Examininit access rilghts,

function IS-GRANTED cTnE: nxE-YE
ACCESS -RIGHT: In NAME STRING)

return DOOLEAx;

Purpose:

This function returns TRUE If the current proess as a subject has an approved access right
ACCESSRIGHT to the OBJECTNODE as an object. Otherwise It returns FALSE.

Parameters:

OBJECTNODE
In an open node handle to the object node.

ACCESS RIGHT
Is the name of a predefined or user-defined access right.

Exceptions:

USEERROR Is raised If ACCESS-RIGHT is not a valid Ada Identifier.

STATUSERROR
Is raised It OBJECTNODE is not an open node handle.

INTENT_-VIOLATION
Is raised If OBJECT_- NODE was not opened wvith an Intent establishing the right
to read relationships or to read access control Information.

Additionai Interface:

75



PROPOsED MIIFLSTD-CA.S

31 J.ANI. AR 1985

function ISaANTE (OBJECT NAME : in NAMESTRING;
ACCESS-RIGHT: in MESTRING)

return BOOLEAN

OJECT_ODE: NODE TYPE;
RESULT: BOOLEAN;

begin
OPEN(OBJECT MODE. OBJECT EIAME. (1=>EAD RELATIONSHIP));
RESULT := Ii -GRANTE(OBJECT-rODE. ACCESS.RIGHT);
CLOSE (OBJECT NODE) ;

r6turn RESULT;
exception

when others =>
CLOSE(OBJECT-MODE);
raise;

end ISGR=AmTD;

5.1.4.4. Adopting a role

procedure ADOPT (RLE -NODE: in NODETYPE;
ROLE M: In RELATIONMP _KY:zLATESTKY) ;

Purpose:

This procedure causes the current process to adopt the group specified by the ROLENODE. A
relationship or the predefnned relation ADOPTED ROLE with relationship key ROLE KEY is
created from the calling process node to the node identified by ROLENODE. In order for the
current process to adopt the group, a node representing some other adopted role of the current
process must be a potential member of the group to be adopted.

Parameters:

ROLENODE
is an open node handle to a node representing the group.

ROLE KEY is a relationship key to be used in creating the relationship.

Exceptions:

USE ERROR is raised if there is no adopted role of the current process that Is a potential
member of the group represented by ROLE NODE or If there already exists a
relationship of the predefined relation ADOPTED ROLE with relationship key
ROLEKEY emanating from the current process node. USEERROR is also
raised if the node identified by ROLENODE Is Inaccessible or unobtainable.

STATUSERROR
is raised If ROLENODE is not an open node handle.

LOCK -ERROR
Is raised If access with Intent APPENDRELATIONSHIPS to the current process
node cannot be obtained due to an existing lock on the node.

SECURITY VIOLATION
Is raised If the operation represents a violation of mandatory access controls.
SECURITY _VIOLATION Is raised only if the conditions for other exceptions are
not present.

76



PRQOP)',E) %.H.-'TIP-( %I,

31 JANt AR) 1985

6.1.4.5. Unlinking an n dopted role

procedure UNADoPTa(iOLEitY: In RELATiONIaPKEY);

Purpose:

This procedure deletes the relationship of the predefined relation ADOPTEI)_ ROIE with
relationship key ROLE_ KEY emanating from the current process notle. If there is no such
relationship, the procedure has no effect.

Parameters:

ROLEKEY in the relationship key of the relation ADOPTEDROLE

Exception:
USE ERROR is raised If the target node of the relationship to be deleted Is the top-level node

identified by "'CURRENT USER". In this case the relationship is not deleted.

LOCKERROR
Is raised If access, with intent WRITERELATIONSHIPS, to the current process
node cannot be obtained due to an existing lock on the node.

5.1.5. Package STRUCTURAL__NODES

Structural nodes are special nodes In the sense that they do not have contents as the other nodes of
the CAIS model do. Their purpose is solely to be carriers of common Information about other nodes
related to the structural node. Structural nodes are typically used to create conventional directories,
configuration objects, etc..

The package STRUCTURAL_ NODES deflies the primitive operations for creating qtructural nodes.

5.1.5.1. Creating structural nodes

procedure CRErxNODE(NODE: In out NOE TYPE
nAB!: In NODE TYPE
KEY: In RELATIONSHIP KEY

:LATEST KEY;
RElATION: In RELATIONMAM

: =DEFAULT RELATION;
AT'rRIET'S: In LIST TYPE :EMP LIST:
ACCESS CONTROL: in LIST TYPE EM PTYLrST;
LEVEL: in LIST TYPE : = EMYLIST);

Purpose:

This procedure creates a structural node and installs the primary relationship to it. The relation
name and relationship key of the primary relationship to the node and the bmse node from which
It emanates are given by the parameters RELATION. KEY. and BASE. An open node handle
to the newly creatwd node with WRITE intent Is returned in NODE.

The ATTRIBUTES parameter defines and provides Initial values rr attributes of the node. The
ACCESS CONTROL parameter specifies initial access control Info -nation to be established for
the created node (4ce Section 4.4).

The LEVEL parameter specifies the security level at which the node is to be crealed.

77



PROPOSED MIL-STD-CA1S

31 JANUARY 1"S

Parameters:

NODE Is a nod. handle, initially closed, to be opened to the newly created node,

BASE Is an op-n node handle to the node from which the primary relationship to the new
node is to emanate.

KEY is the relationship key of the primary relationship to be created.

RELATION is the relation name of the primary relationship to be created.

ATTRIBUTES Is a named list (see Section 5.4) whose elements are used to establish Initial values
for attributes of the newly created node; each named Item specifies an attribute

name and the value to be given to that attribute.

ACCESSCONTROL
Is the Initial access control Information Lsoclated with the created node; it is a

named list (see Section 5.4) each of whose named Items specifies a relationship key
followed by a list of access rights.

LEVEL Is the classification label for the created nxle (see TABLE IV).

Exceptions:

NAMEERROR

Is raised If a node already exists for the node Identification given. If the node
Identification is Illegal. or If any node Identifying a group specified in the given
ACCESS CONTROL parameter Is unobtainable or Inaccesslble.

USE_ ERROR Is raised If the ACCESSCONTROL or LEVEL parameters do not adhere to the

required syntax or If the ATTRIBUTES parameter contains references to predefined
attributes which cannot be modified or created by the user. USE ERROR is also
raised if RELATION is the name of a predefined relation that cannot be modified

or created by the user.

STATUSERROR
I raised If BASE is not an open node handle or If NODE Is an open node handle

prior to the call.

INTENTVIOLATION
Is raised If BASE was not opened with an Intent establishing the right to append
re.atlonshlps.

SECURITY VIOLATION
Is raised If the operation represents a violation of mandatory access controls.
SECURITY_ VIOLATION Is raised only If the conditions for other exceptions are

not present.

Additional Interfaces:

procedure cRE, AlNWoDE (NODE: In out MODETYPE;
KMt : In KAMErSTRING;

78



PROPOSED M[L,!5TD-C.AJS

31 JANLAR't 19M.

ATTRIBUTES: in LIST TYPE :3 TY LIST:
ACCESS COMNTROL; In LIST TYPE : TY LIST.

LEVEL: In LIST-TYPE :~DUITY LIST);

BASE: NODE TYPE;

begin
OPU (RASE. Dat PATH(MME). (1z-APPN FMATIOUSSIP) );
MULTE NME (Mi~. BASE. LAST KE(KAME). LAST RELATION (NM).

ATIUTEU. ACES CnTRO. LEVEL);
C! OSE CEAE);

exception
when others a>

CLOSE OSOE);
aLS (BASE)

and CREATE NDE

procedure cNEATE NODECEAS: in NwE TYPE;
MY: In RELATIOWMSPKEY

: LATEST KEY;
RELATION: In REL.ATION NAM

:=DEFAULT RELATION:
ATTRIBUTES. in LIST TYPE :3 WPTY LIST;
ACCESS CONTROL: In LIST TYPE :' DIPT LIST;
LEVEL: in LIST TYPE :' hTY -LIST;

is
OWE: NOWE-TYPE;

begin
CREATE NODE (UODE. KEY, RELATION. ATTRIBUTES . ACCESS CONTOL, LEVEL);
CLOSE (NODE);

end CREATE NODE;

procedure CNEATE NODE (NAME: In ME STRING;
ATTRIBUTES: in LIST TYPE SU M LIST;
ACCESS CONTROL: in LIST TYPE :sEIMTY LIST;
LEVEL: in LIST-TYPE : wTY LIST);

NODE: NODE TYPE;
begin

CREATE MODE (NODE. NAME. ATTRIBUITES. ACCESSCONTROL. LEVEL);
CLOSE (NODE) ;

end CREATE NODE;

Nouns:

Use or the sequence or a CREATE_-NODE call that does not return an open node handle
followed by a call on OPEN for the created node, using the node Identification or the created
node, cannot guarantee that a handle to the node just created is opened; this is becauise
relationships. and therefore the node Identification. may have changed since the
CREATENODE call.

5.2. CAIS process nodes

This section describes the semantics of the execution or Ada prne'ams as represented by CAIS
processes and the facilities provided by the CAIS for initiating and -ntroiling proem"es. li'le major
stages in a process' life are Initiation. running (which may lncidte - impension or resuimption). and
termination or abortion. The CAIS defines facilntio- to control fid coordinate the initiation,
stupension. resuniption. and termination r abortion of processes '-e Section 4.3.2). Each CAIS
process has a citrrent status aissocilated %% h It which changes wit', "rtain events9 Put spccifled In
TABLE V1.

79



PRoo-i)K %1IL-STD-(A.MS

31 JAM AR 19M,

A process Is said to be terminated when Its main program (In the sense or [LRM] 10.1) has terminated

(in the sense of [LRMj 9.4). 6ee also the notes In [LRM] 9.4. Thus, termination of a process takes

place when the main program has been completed and all tasks dependent on the main program have

terminated. A process may be aborted either by Itself or by another process. When a process has

terminated or has been aborted, all of its dependent processes which have not already terminated or

been aborted will be aborted but Its process node remains until explicitly deleted. Any open node

handles of a process are closed when the process terminates or is aborted.

Two mechanisms for a process to initiate another process are provided:

a. Spawn - the procedure SPAWN _ PROCESS returns after Initiating tne specified program.

The Initiating process and the Initiated process run In parallel, and, within each of them,
their tasks may execute in parallel.

b. Invoke - the procedure INVOKE PROCESS returns control to the calling task after the

initiated process has terminated or aborted. Execution of the calling task Is blocked until
termination or abortion of the Initiated process, but other tasks in the Initiating process

may execute In parallel with the Initiated process and Its tasks.

Every process node has several predefined attributes. Three of these are: RESULTS, which can be
used to store user-defined strings giving Intermediate results of the process: PARAMETERS, which

contains the parameters with which the process was Initiated; and CURRENTSTATUS, which gives
the current status of the process (see TABLE VI). In addition, every process node has severa!
predefined attributes which provide information for standardized debugging and performance

measurement of processes within the CAIS Implementation. One of these predefined attributes,
HANDLES _ OPEN, has an Implementation-independent value which gives the number of node
handles the process currently has open. The remaining predefined attributes have Implementation-
dependent values and should not be used for comparison with values from other CAIS
Implementations. START_ TIME and FINISH TIME give the time of activation and the time of

termination or abortion of the process. MACHINE_ TIME gives the length of time the process was
active on the logical processor, If the process has terminated or aborted, or zero, If the process has not
terminated or aborted. IU _ UNITS gives the number of GET and PUT operations that have been
performed by the process. The CURRENTSTATUS, HANDLESOPEN, START_TIME,

FINISH _ TIME, MACHINE_TIME, and 10_UNITS predefined attributes are maintained by the
implementation and cannot be set using CAIS Interfaces.

When a process has terminated or aborted, the final status, recorded In the predefined process node

attribute CURRENT_ STATUS, will persist as long as the process node exists.
CURRENT STATUS may also be examined by the CAIS procedures STATUS OF PROCESS
and GET-RESULTS. The process status of a process will be returned to any task awaiting the
termination or abortion of the process whenever the process is terminated or aborted. If the process
has already been terminated or aborted at the time a call to AWAIT PROCESS_ COMPLETION Is

made, then the final status Is immediately available.

For purposes of Input and output, every process node has one relationship of each of the following

predefined relations: STANDARD INPUT. STANDARD_ OUTPUT, STANDARDERROR,

CURRENTINPUT, CURRENT_OUTPUT, and CURRENTERROR. STANDARDINPUT,
STANDARD _ OUTPUT and STANDARD _ ERROR are relation names of relationships established
at Job creation to the default Input, output and error fies, respectively. The STANDARD INPUT
and STANDARD _ OUTPUT fies conform to the semantics given for thesw In [LRMj 14.3.2.

CURRENT INPUT, CURRENT OUTPUT and CURRENT ERROR are relation names of
relationships established by a process to alternative flies to be used as the default Input, output and
error files, respectively. CURRENT INPUT and CURRENT OUTPUT also conform to the

so



*D-AI5 7-5B9 Rf UN 2/
UNCLASSI IFED F/G 9/2 ML



11112 .21
*fl.. - __ 36

1.25 1.A__ j1.

MICROCOPY RESOLUTION 11SI H

NAJ(N%,E A , r AN! .



PRIOPO-CFD \IIl, Tr)-( 141,

31 J,%%VkRN look".

semantics or [LRMi 14.3.2. Interfaces are provid.d in the CAIS input and output packages (see

Section 5.3) to read relationships of these predeflnd relations and to change the relationships or the

relations CURRENTINPUT, CURRENT OUTPUT. and CURRENTERROR.

Table VI. Process status transition table

I status: I non ex1etont I READY I SUSPENDED I ABORTED I TIMI"ATED
I event I I I I I

I process I READY I /A I N/A I N/A I N/A
I creation I I I I I

I termination I I TERM- I N/A I N/A I N/A
I of main I N/A I INATEDI I I
I program I I I I

I ABORT I N/A I ABOR- I ABORTED I --- I ---

I PROCESs I I(TED I I I

I SUSPEND- I N/A I SUS- I --- I
I PROCESS I I iPENDEDI I

I ESUME I /A i --- I READY I --- I ---
I POCESS I I I I I

N/A: marks events that are not applicable to the status
speclfied.

marks events that have no effect on the status.

upper case: status vhlch are values of the enumeration type
PROCESS STATUS (e.g.. READY) and for events which
are caused by calling CAIS Interface@ (e.g..
ABORT PRDCESS).

lower case: other statue (i.e,. non-existeont) and other events
(e.g.. termination of the main program).

5.2.1. Package PROCESS_DEFINITIONS

This package defines the types and exceptions associated with process nodes.

type PROCESSSTATUS Is
(READY. SUSPENDED. ABORTED, TERMINATED);

An object of type I'ItOCE SS STATUS is the nts. or a process.

subtype REStILTSLIST Is CAI$.LIST UTILITIES.LIST TYPE;
subtype RESUJLTS _rING Is -miN;
subtype PARAMETEiR LIST is CAIS.LIST UTILITIES.LIST TYPE:

An object of type RESULTS ILIST Is a list of results from a process. The eh'ment-q or this list are or
type RESULTS _STRING. An object of type PARAMETER LIST is a list cont iling process
parameter Information.

IN



PROPOSED MII-,TD.-CAIS
31 JANUAR) 1985

ROOTPROCESS constant NAME STRING : *'CURRENT J0-;
CURRENT INP Tf Constant NAME ING : "CURRMT INPU';
CURRE OUTPTr : constant mAKANTRING = CURRENT OUTPUT;

CURRENT-E LROR constant MME STINIG :: "'= f R E ROR';

ROOT PROCESS is a standard pathname for the root process node of the current job.
CURRENTINPUT, CURRENTOUTPUT and CIIRENT_ ERROR are standard pathnames for
the current process" input, output and error files, respv,.ively.

5.2.2. Package PROCESS CONTROL

This package specifies interfaces for the creation and termination of processes and examination and
modification of process node attributes.

As part of the creation of process nodes, new secondary relationships are built as described in TABLE
VII.

Table VII. Created and Inhv,1fAd relationships

A secondary relationship Is created to the node
of the predefined relation: Identified by:

CURRENT IMPUT the interface parameter INPUT FILE
CURRENT OUTPUT the Interface parameter OTPUT FILE
CURRENTERROR the lnter face parameter ERROR FILE
ADOPTED ROLE the Interface parameter FILE NODE
CURRENT NODE the Interface parameter ENVRMENT NODE
PARENT the predefined constant CURRENT PROCESS

(for dependent process nodes)
the predefined constant CURRENT USER
(for root process nodes)

The created process node Inherits all secondary relationships
of the folloving predefined relations from the creating process
Rod*:

CURRENT USER
USER
ALLOW ACCESS
DEVICE
STANDARD INPUT
SfTANDARD WTPUT
STANDARD ERROR
ADOPTEDROLE []
CURRENT 303 (2)

I. For CREATE JOS. only the relationship of the predefined relation ADOPTED_ ROLE
with the CURRENT USER as target is inherited from the creating process node.

2. For CREATE JOB, a relationship of the predefined relation CURRENT JOB is created
with the new node as both source and target Initead or being Inherited from the creating
process node.

82



PROPOSED MIL-STD-( AlJ
3J JANUARY 199,

5.2.2.1. Spawning a process

procedure PAV PROCESS
(NODE in out NoE TYPE;
FILE NOE: n EDE TYPE;

IN t"PARA rNE : In PARAiCF LIST: zET r LIST;
KEY: In NEL"ATIONIIP KEY :F LATET KEY;
RE.ATION: In EL.ATONNAk : DEF L MRWATION;
ACCSS COTROL: In LIST TYPE MOTY LIST;
LEVEL: In iS-_TYP :M OTT-LST;
ATIUTES: in LIST iE :D uir LIST;
DINT FILE: in NiAMESrING :z AENTIMUIT;

TIJRti FILE: In AMESTrRING : = CwuRRENTDnIU;
ENROR FILE: In xummw STRNG : O rrEN utDO;
ENVIR1N TXTIDE: In NAMETRING :C= URRElNOE);

Purpose:

This procedure creates a new process node whose contents represent the execution of the
program contained In the specified file node. Control returns to the calling task after the new
node is created. The process node containing the calling task must have execution rights for the
file node. An open node handle NODE on the new node is returned, with an Intent (I=>
READATTRIBUTES). The new proces, as a subject, bas all discretionary access rights to Its
own process node (the object). When the parent process terminates or aborts, the child process
will be aborted.

Secondary relationships emanating from the new process node are created and Inherited as
described In TABLE VII.

The ACCESSCONTROL parameter specifies the Initial access control Information to be
established for the created node. If the CAIS models of discretionary and mandatory access
control are used, then, in addition to the relationships established using the Information In the
ACCESS CONTROL parameter, an access relationship Is established from the created process
node to the current user node, with a GRANT attribute value ((READ. WRITE, CONTROL)).

The LEVEL parameter specifies the security level at which the node is to be created.

Parameters:

NODE is a node handle returned open on the newly created process node.

FILE_NODE is an open node handle on the file node containing the executable image whose
execution will be represented by the new process.

INPUT PARAMETERS
is a list containing process parameter information. The list Is constructed and
.parsed using the tools provided In CAIS.LIST UTILITIES (see Section 5.4). The
value of INPUTPARAMETERS Is stored in a predefined attribute
PARAMETERS of the new node.

KEY Is the relationship key of the primary relationship from the current process node to
the new process node. The default is supplied by the mechanism of interpreting the
LATESTKEY constant.

RELATION Is the relation name of the primary relationship from the current process node to
the new process node. The default is DEFAULTRELATION.

93



PROPOSED MI-STD-CAIS

31 JANUARY 1916:

ACCESS CONTROL

is a string defining the Initial access control Information a.m8oclated with the created

node.

LEVEL is a string defining the classification label for the created node (see TABLE IV).

ATTRIBUTES is a list which can be used to set attributes or the new node. It could be used by an

Implementation to establish allocation of resources.

INPUTFILE. OUTPUTFILE. ERRORFILE

are pathnames to file nodes.

ENVIRONMENT_ NODE
is the node the new process will have as Its Initial current node. The default value
is the CURRENT NODE of the Initiating process.

Exceptions:

NAMEERROR
Is raised If a node already exists for the relationship specified by KEY and
RELATION. NAMEERROR is also raised If any of the nodes Identified by
INPUTFILE, OUTPUTFILE, ERROR_FILE, or ENVIRONMENTNODE do
not exist. It is also raised If KEY or RELATION is syntactically Illegal or if any

node Identifying a group specified in the given ACCESSCONTROL parameter is
unobtainable or Inaccessible.

USE ERROR Is raised If It can be determined that the node Indicated by FILE NODE does not
contain an executable image. USE ERROR is also raised if any of the parameters
INPUTPARAMETERS, LEVEL, ACCESSCONTROL. or ATTRIBUTES is
syntactically or semantically Illegal. USE_ ERROR Is also raised if RELATION is

the name of a predefined relation or If the ATTRIBUTES parameter contains
references to a predefined attribute which cannot be modified or created by the

user.

STATUSERROR
is raised If NODE is an open node handle prior to the call or If FILENOI)E is not
an open node handle.

LOCKERROR

is raised If access with intent APPEND_ REI,ATIONSIIIPS to the current process
node cannot be obtained due to an existing lock on the node.

INTENT VIOLATION
Is raised If the node designated by FILE_ NODE was not opened with an Intent
establishing the right to execute its contents.

Notes:

SPAWN PROCESS does not return results or process status. If coordination between any t:Ltk
and the new proce.A Is desired. AWAIT_PROCESS COMI'IETION or the technique
provided In CAIS Input and output (qee Section 5.3) must be used.

84



PROPOSED MIL-STD-cAIS
31 JANIAR' 195

r

5.2.2.2. Awaiting termination or abortion of another process

procedure AWAIT PROCESS-COMPLETION
(NODE: In NODETYPE;
TIME LIMIT: in DURATION := DURATIONIABT);

Purpose:

This procedure suspends the calling task and waits for the process Identified by NODE to
terminate or abort. The calling task Is suspended until the Identified process terminates or
aborts or until the time limit Is exceeded

Parameters:

NODE is an open node handle for the process to be awaited.

TIME LIMIT Is the limit on the time that the calling task will be suspended awaiting the process.

When the limit is exceeded the calling task resumes execution. The default is the
Implementation-dependent maximum value for DURATION.

Exceptions:

NAMEERROR
is raised If the node Identified by NODE Is Inaccessible or unobtainable.

STATUSERROR

Is raised If NODE Is not an open node handle.

INTENT-VIOLATION
is raised if NODE was not opened with an Intent establishing the right to read

attributes.

Additional Interface:

procedure AWAIT PROCESS-COMPLETION
(NOWE in ODE TYPE;
RESULTS RETURND In out RESULTS LIST;
STATUS out PROCESS STATUS;
TIME LIMIT : In DURATION := DURATION'LAST)

is
begin

AWAIT PROCESSCOMPLETION (NODE. TIME LIMIT);
GET RESULTS (NODE, RESULTS RETURND);
STA US := STATUS OF PROCESS (NODE);

end AWATTPROCESS COMPLETION;

5.2.2.3. Invoking a new process

procedure xvoKE PRocEss
(NODE: In out NODE TYPE;
FILE NODE: In NODE-TYPE;
RESULTS RETURNED: In out RESULTS LIST.
STATUS: out PROCESSSTATUS;
ImNrr PARAMETERS: In PARAMETER LIST;
KEY: In RELATIONSHIP KEY : LATEST-KEY;
RELATION: In RELATION-NAME: wDEFAULT RELATION;

35



PROPOZED MII - TD-( AI

11 JAN[ AR' 1O'

ACCESSCONTROL: In LIST TYPE irr_ LIST;
LEVEL: in LIST" TYP := MPTY-.LIST;
ATTRIBUTES: in LIST TYPE EMPTY LIST;
INPUT FILE: In NAKE STRING : CURMRXTINPUT;
OTPUT FILE: In NAMESTING CURRENT _OUTPUr;
ERROR FILE: In NAME STRING CURRENT ERROR;
EvWIoNmN ODE: in AME -MING : CURRENT-ODE;
TIME LIMIT: In DURATION := ,URATION'LAST);

Purpose:

This procedure provides the functionality described by the following Ada fragment except that
the implementation must guarantee that only exceptions raised by the call to
SPAWNPROCESS In this fragment are raised by INVOKE-PROCESS.

SPAWN PROCESS (NODE. FILE NODE. INPUT PARAMETERS. KEY. RELATION.
ACCESS CONTROL. LVEL. *ATrirmS. INPTr FILE.
CUTPUT -ILE. ERROR-ILE. ENVIRONMENTNODE);

AWAIT PROCESS COMPLETION (NODE, TIME LIwIT);
GET RESULTS (MODE. RESULTSRETURNED);
STATUS := STATUS_OFPROCESS (NODE);

Parameters:

NODE is a node handle returned open on the newly created process node.

FILE NODE Is an open node handle on the hie node containing the executable image whose

execution will be represented by the new process.

RESULTS RETURNED

Is a list of results which are represented by strings from the new process. The
individual results may be extracted from the list using the tools or
CAIS.LISTUTILITIES.

STATUS gives the process status or the process. If termination or abortion of the identified
process can be reported within the specined time limit. STATUS will have the value
ABORTED or TERMINATED. If the process does not terminate or abort within
the time limit, STATUS will have the value READY or SUSPENDED.

INPUT PARAMETERS
Is a list containing process parameter Inrormatlon. The list Is constructed and
parsed using the list handling tools of CAIS.LIST_ UTILITIES. The value or
INPUTIPARAMETERS is stored In the predefined attribute PARAMETERS or
the new node.

KEY Is the relationship key of the primary relationship from the current proces node to
the new process node. The default is supplied by the mechanism of interpreting the

LATEST KEY constant.

RELATION Is the relation name of the primary relationship from the current process node to
the new node. The default Is DEFAULT _ RELATION.

ACCESS CONTROl.
Is a string denning the Initial access control Information associated with the created

node.

I,EVEL Is a string denning the lasifleatlon label for thi ereated node (see TAItIE IV).

86



PROPO"ED MIIrTD-CA1S
31 JANUARY 198.5

ATTRIBUTES Is a list which can be used to set attributes of the new node. It could be used by an
Implementation to establish allocation of resources.

INPUTFILE. OUTPUTFILE. ERROk_FILE
are pathnames to file nodes.

ENVIRONMENT NODE
is the node the new process will have as Its current node.

TIMELIMIT Is the limit on the time that the calling task will be suspended awaiting the new

process. When the limit is exceeded, the calling task resumes execution. The

default is the Implementation dependent maximum value for DURATION.

Exceptions:

NAMEERROR

Is raised if a node already exists for the relationship specified by KEY and

RELATION. NAME ERROR Is also raised If any of the nodes Identified by
INPUTFILE, OUTPUTFILE. ERRORFILE or ENVIRONMENT NODE do
not exist. It Is also rased If KEY or RELATION is syntactically Illegal or If any

node identifying a group specified In the given ACCESSCONTROL parameter is

unobtainable or inaccessible.

USE ERROR is raised If it can be determined that the node Indicated by FILE _NODE does not

contain an executable image. USEERROR is also raised if any or the parameters

INPUT PARAMETERS, LEVEL. ACCESSCONTROL,. or ATTRIBUTES is
syntactically or semantically illegal. USE ERROR is also raised if RELATION is

the name of a predefined relation or if the ATTRIBUTES parameter contains

references to a predefined attribute which cannot be modified or created by the

user.

STATUSERROR
Is raised If NODE is an open node handle prior to the call or If FILE NODE is not

an open node handle.

LOCK ERROR
Is raised If access with Intent APPEND- RELATIONSIIIPS cannot be obtained to

the current process node due to an existing lock on the node.

INTENT VIOLATION

is raised if the node designated by FILE NODE was not opened with an Intent

establishing the right to execute contents.

Notes:

Both control and data (results and status) are returned to the calling task upon termination or

abortion of the Invoked prcess or when the TIMEILIMIT is exceeded.

67



PROPO;FD ,M 1IleTDf-CAI

31 JANI4RN 1985i

5.2.2.4. Creating a new job

procedure EATE JOB
(FILE NODE: In NODE TYPE;

INPUIT PARAMETERs: in PARAME"ER LIST: =EmPTY_LIST;
KEY: in RELATIONSHIPKEY := LATEST-KEY;

ACCESS CONTROL: in LIST TYPE := EMPTY LIST;

LEVEL: in LIST TYPE = EMPTY LIST;
ATTRIBUTES: In LISTTYPE := EMPTYLIST;
INPUT-FILE: in AME _STRING : CURRENT-INPUT;
OUTPUTFILE: In NA MESTRING : CURRENT OUTPUT;
ERROR FILE: in NAMESTRING : CURRENTERROR;
ENVIRoNMENT NODE: in NAME_STRING := CURRENTUSE);

Purpose:

This procedure creates a new root process node whose contents represent the execution of the
program contained In the specifled file node. Control returns to the calling task after the new

Job is created. The process node containing the calling task must. have execution rights for the

file node and sufficient rights to append relationships to the node identified by
"'CU RRENT USER". A new primary relationship of the predefined relation JOB is
established from the current user node to the root process node of the new job. The new root

process as a subject can acquire all discretionary access rights to Its own process node (the
object). Secondary relationships emanating from the new process node are created and Inherited

as described In TABIE VII.

The ACCESS CONTROL parameter specifies the Initial access control Information to be
established for the created node. If the CAIS models of discretionary and mandatory access
control are used. then. In addition to the relationships established using the Information In the

ACCESS CONTROL parameter. an access relationship is established from the created process
node to the current user node, with a GRANT attribute value ((READ. WRITE, CONTROL)).

The LEVEL parameter specifies the security level at which the node Is to be created.

Parameters:

FILE NODE Is an open node handle on the file node containing the executable image whose
execution will be represented by the new process.

INPUT_ PARAMETERS
Is a list containing process parameter Information. The list Is constructed and
parsed using the tools provided In CAIS.LIST UTILITIES.
INPUT- PARAMETERS Is stored in the predefined attribute PARAMETERS of

the new node.

KEY Is the relationship key of the primary relationship of the predefined relation JO3
from the current user node to the new process node. The default Is supplied by the

mechanism of interpreting the LATEST KIY constant.

A(,CIS _CONTROL
Is a string defining the iillal access control Information a.soeiated with the created

node.

LEVEL, Is a string defining the i:imiflcation label for the created node (see TABLE IV).

Igo



31 JANI AHN MRg,

ATTRIBUTES Is a list which can be used to set attributes of the new node. It could be used by an
Implementation to establish allocation or resources.

INPUTFILE, OU-PUTFILE. ERRORFILE
are pathnames to file nodes.

ENVIRONMENTNODE
Is the node the new process will have as Its Initial current node.

Exceptions:

NAME -ERROR
Is raised If a node already exists for the relationship specified by KEY and the

relation JOB. NAME ERROR is also raised If any of the nodes identified by
INPUTFILE, OUTPUTFILE, ERRORFILE or ENVIRONMENT NODE does
not exist. It is also raised If KEY Is syntactically Illegal or If any node identifying a

group specified In the ACCESS CONTROL parameter Is unobtainable or

Inaccessible.

USE ERROIR Is raised If it can be determined that the node indicated by FILE NODE does not
contalit an executable image. USE ERROR is also raised if any or the parameters

INPUT PARAMETERS, LEVEL, ACCESSCONTROL, or ATTRIBUTES is
syntactically or semantically illegal. USE ERROR is also raised If the

ATTRIBUTES parametet contains references to a predefined attribute which

cannot be modified or created by the user.

STATUS_ERROR

Is raised if FILE NODE is not an open node handle.

LOCK ERROR

Is raised if access to 'he current user node or the current process node with intent

APPEND_ RELATIONSHIPS cannot be obtained due to an existing lock on the

node.

INTENT VIOLATION
is raised If the node designated by FILENODE was not opened with an Intent

establishing the right to execute contents.

ACCESS_ VIOLATION
Is raised If the current process does not have sufficient discretionary access rights to
open the current user node with APPEND RELATIONSIllPS intent.

ACCESS VIOLATION Is raised only If the conditions ror raising NANE _ERROR

are not satisfied.

SECURITYVIOLATION

is raised If the attempt to obtain access to the node identified by
CURRENT USER represents a violation of mandatory access controls for the

CAIS. SECURITY VIOIATION Is raised only if the conditions for raising the

other exceptions are not satisfied.

-~ _ ____ - __ ___ -9



PROPOSED 1IL-qTD-CACS

31 JANARY 19f.h

Notes:

CREATE JOB does not return results or process st ttus to the calling program unit. if
coordination between any program unit and the new process is desired,
AWAIT_ PROCESS_ COMPLETION or th, techniques provided in CA.IS input and output

(see Section 5.3) must be used.

The relation name for the primary relationship to the new node is JOB.

5.2.2.5. Appending results

procedure APPENDRESULTSMESULTS: in RESULTSSMTING);

Purpose:

This procedure inserts the value or Its RESULTS parameter as the last Item in to the list which
Is the value of the RESULTS attribute of the cirrent process nod(

Parameters:

RESULTS Is a string to be appended to the RESUTITS attribute value or the ,urrent prr .-ss
node.

Exceptions:

LOCKERROR
Is raised if access with Intent WRITEATTRIBUTES to the current process node
cannot be obtained due to an existing lock on the node.

5.2.2.6. Overwriting results

procedure WRITERESULTS (RESULTS: in RESULTSSTING);

Purpose:

This procedure replaces the value of the RESULTS attribute of the current process node with a
list containing a single Item which Is the value of the parameter RESULTS.

Parameters:

RESULTS is a string to be stored in the RESULTS attribute of the current process node.

Exceptions:

LOCKERROR
Is raised if access with intent WRITE _ATTRIBUTES to the current process node
cannot be obtained due to an existing lock on the node.

5.2.2.7. Getting results from a process

procedure GET RESULTs (NODE: in NODETYPE;
RESULTS: in out RESULTSLIST);

Purpose:

This procedure returns the value of the attribute RESUITS of the process node Identified by

NODE. The process need not have terminated or Rhorted. The empty list is returned in
RESULTS if WRITE _ RESUITS or AI''END _RES tLTS has not been called by the process
contained In the node Identified by NODE.

gO



PROPO,'ED MIL- 'TD-C ki.,

Parameters:

NODE Is an open node handle on a procers node.

RESULTS Is an unnamed list of strings which returns the value of the RESULTS attribute of
the process node identified by NODE. The Individual strings may be extracted
from the list using the tools or CAIS. LIST -UTILITIES (see Section 5.4).

Exceptions:

USE_-ERROR Is raised if the node identified by NODE Is not a process node.

STATUSERROR
Is raised if NODE is4 not an op-n node handle.

INTENT_ VIOLATION
Is raised It the NODE was no' opened with an Intent establishing the right to read
attributes.

Additional Interfaces:
procedure GET_REsuLTs (NODE in NODETYPE;

RESULTS: in Out RESUbLTSLIST;

STATUS: out PROCESSSTATUS)
is

begin
GET RESULTS (NODE. RESULTS);
STATUS: =STAflJSOFPROCESS (NODE);

end GETREsuLTS;

procedure GET REsuLTs (NAME: in NAME-STRING;
RESULTS: in out RESULTS-LIST;
STATUS: out PROCESS STATUS)

NIODE: NODE_1TYP
begin

OPEN(NODE. NAME, (I=>RE.ADATTRIBUTES));
GETRESULTS (NODE. RESULTS);
STATUS =STATUS OF PROCESS (NODE);
CLOSE (NODE);

exception
when others =>

CLOSE (MODE);
raise;

end GET RESULTS;

procedure GET RESULTS (NAME: in NAME STING;
RESULTS: In out RESULTS LIST)

is
NODE. NODE TYPE;

begin
OPEN(NODE. NAME, (1=>READ ATTRIS -ES));
GET RESULTS (NODE. RESULTS);
CLOSE (NODE);

exception
when others =>

CLOSE (NODE);
raise;

end GET RESULTS;

691



31 JAM ARI IOL%

6.2.2.8. Determininlc the status of a process

function sATUSO PRDCESS(YE: In NODET I)
return PROCEsrATust;

Purpose:

This runction returns the current status or the process represented by NODE. It returns the
value or the attribute CURRENT _STATI " associated with the process node Identified by
NODE.

Parameters:

NODE is an open node handle identifying the node or the process whose status is to be
queried.

Exceptions:

USEERROR Is raised if the node identified by NODE is not a process node.

STATUSERROR

Is raised If NODE Is not an open node handle.

INTENT VIOLATION

is raised If the node handle NODE was not opened with an Intent establishing the
right to read attributes.

Additional Interface:

function STATUS_OF_PRocESS(NAmE: In NmE_sr IN)
return PRocEss STATUS

is
NODE: NODETYPE;
RESULT: PROCESS_STATUS;

begin
OPEN(NODE, NAME, (1=>READATTRIBJTES));
RESULT := STATUSOF PROCESS(MODE);
CLOSE (NODE) ;

return RESULT;
exception

when others =>
CLOSE (NODE);
raise;

end STATWOF PROCESS;

5.2.2.9. Getting the parameter list

procedure GET-PARAMETERS(PARAMETERS: In out PARAMETER- LIST);

Purpose:

This procedure returns the value or the predefined attribute PARAMETERS of the ctrrent
proces node.

Parameters:

PARAMEITES

92



PROPO) FD NllJSTr-CAIS

31 JANIAR'I 199&"

ACCESS-CONTROL
deflnes the Initial access control Information associated with the created node.

LEVEL deflnes the ciassifleation label for the created node.

Exceptions:

NAME_ ERROR
Is raised If a node already exists for the node specified by KEN' and RELATION. if
KEY or RELATION Is syntactically Illegal, or if any node Identifying a group
specified In the given ACCESS-_CONTROL parameter is unobtainable or

inaccessible.

USE_ ERROR is raised If any or the parameters ACCESSCONTROL, LEVL or ATTRIBUTES
Is syntactically or semantically Illegal. USE _ ERROR is also raised It interpretation

or the ATTRIBUTES parameter would result In modification or creation of any
predefined attribute. USE ERROR Is also raised If RELATION is the name of a

pred f-ined relation that cannot be modified or created by the iiser.

STATU.S_ ERROR

Is raised It BASE is not an open node handle or If FILE Is an open file handle prior
to the call.

INTENT_-VIOLATION
Is raised If BASE was not opened with an intent establishing the right to append

relationships.

SECURITY _VIOLATION

is raised If the operation represents a violation of mait iorN acess controh.

SI2CIIITY __VIOlATION is raised only If the conditions I .r ot her exceptions are

not present.

Additional Interface:

procedure cREATE(FiLE: in out FILE -TYPE;

NAME in NAME STRING;
MODE: in FILEMODE INCIUT-FILE,
FORM. in LISTTYPE EMPTY LIS-T.
ATTRIBUTES in LISTTYPE EMMT LIST,
ACCESSCONTRL: in LIST-TYPE :EMPTY LIST.
LEVEL, in LIST TYPE :=EMPTYLIST'

BASE :NODE TYPE,
begin

OPEN(BASE. BASE PATN(NAME). (1=>APPEMDRELATIOSHIPS));
CREATE(FIL1E, BASE, LAST KEY(MAME). LAST RELATIow(NAmgE).

MODE, FORM. ATr~iWTES, ACCVSS CONTROL. LEVEL);
CLOSE (BAE);

exception
when others =>

CLOSEW(ILE);
CLOSE (BASE).

raise.
end CREATE.

106



31 J-,NI '%V) JWI

FILE -MODE Indicates whether Input operations, output operations or bot h can be lprformed on thi
dire -accew file.

5.3.2.2. Creating a direct input or output file

procedure CREATE(FILE: in Out FILE TYPE;

BASE: in NODE TYPE;
KEY. in RELATIONSHIPKEY

LATEST KEY;
RELATION: in RELATION NAME:

DEFAULT RELATION;
NODE: in FILENODE : INOUT_FILE.
FORM: in LISTTYPE EMPTY-LIST.
ATTRIBUTES: in LIST TYPE EMPTY LIST;
ACCESSCONTRDL: in 'IST TYPE := EMPTYLIST;
LEVEL: In LIST TYPE := EPTY LIST);

Purpose:

This procedure creates a file and its rile node; each element of the rile is directly addressahle by
an index. The rLRM defines what constitutes Rn element. The attribute ACCESS_ METHIOI)
is assigned the value "(DIRECT, SEQUENTIAl )" as part of the creation.

The F.9RM parameter is used to provide file characteristics concerning the creation or the file.

The predefined file characteristic ESTIMATED SIZE may be used to specify an approximation
to the number of storage units (I.e, bytes or hlocks) that should be writable to the file. The
ESTIMATEDSIZE characteristic Is specified s "(ESTIMATEDSIZE => n)", where "n" is

any NATURAL number.

The ATTRIBUTES parameter defines and provides Initial values for attributes of the node. The

ACCESS CONTROL parameter specifies initll access control information to be established for
the created node (.see Section 4.4.2.1 for details)

The LE\VEI. parameter specifies the security level at which the file node is to be created.

The value of the attribute FILEKIND for the file node will be SECONDARY _STORAGE.

Parameters:

FILE Is a file handle, Initially closed, to be opened.

BASE Is an open node handle to the node which will be the source of the primary

relationship to the new node.

KEY is the relationship key of the primary relationship to be created.

REIATION Is the relation name of the primary relationship to be created.

MODE Indicates the mode of the file.

FORM Indicate- flie chararterlxstle

ATTRIII 'TES deflnes initial valhes for attrlbuti-q of the newly created node.

I '



PROPO1,ED MIL-TD4AI
5

31 .1ANUAR' 1095

5.3.1. Package 10-DEFINITIONS

This package defines the types and exceptions associated with file nodes.

type 0CHACTERARRAY is array (0AACMr) of BOOLEAN;

type FILE MODE Is (IN FILE, INOUT FILE. WOT FILE. APPEND FILE).

type FILE lYPE Is limited private;

type FUNCTION KEYDESCRIPTOR (LrDrIM: POsITIWE) is private;

type TABENUiERATION in (HORIZONTAL, VERTICAL);

type POSITION TYPE is
record

RO NKATRAL;
COLUMN NATURMAL;

end record;

CHARACTER _ARRAY provides information concerning the characters that can be obtained during

a GET operation. FILE _MODE Indicates the type of operations that are to be permitted on a rile.

Analogous to the ILRMj type FILETYPE and the CAIS type NODETYPE. the CAIS provides a

type FILE_ TYPE whose values are references to Internal flies. FILETYPE is used for controlling

the operations on all files. FUNCTION KEY DESCRIPTOR Is used to determine the function

keys entered from a terminal. TAB _ ENUMERATION is used to specify the kind of tab stop to be

wet. POSITION TnPE is used to specify a position on a terminal.

This package also provides the definitions for all exceptions generated by the input and output

packages. These definitions are comparable to those specified In the package IO EXCEPTIONS in

the LRM!.

5.3.2. Package DIRECT-IO

This package provides facilities for direct-access Input and output to CAIS flies comparable to those

described in the DIRECT _ 10 package of JLRMJ. Files written with the CAIS.DIRECT 10 are also

readable by CAIS.SEQUE'NTIAL 10, If the two packages are Instantiated with the same generic

data type.

The package specification and semantlcs of the CAIS.DIRECT 10 are comparable to those of the

(LRMI package DIRECT 10. All subprograms present In the [LRM; package DIRECT.10 are

present In this CAIS package. The following se, lions demonstrate only the specifications and

semantics that differ.

6.3.2.1. Subtypes and constants

subtype FILE TYPE Is CAIS.O DEFINITIONS.FILE TYPE;

subtype FiLE moDE iS CAIS.I DEFINITIONS.FILE MODE;

FILE TYPE describes the type for rile handles for all direct Input and output operations,

104



PROPONED kf1, T1-.- Adl

31 JANI 41C1 1PM-'

Table IX. File node predeflned attributes, attribute values and

relation

Secondary Mallet1c
S6torage Queue Terulnal Tape

ACCR METHOD I A I A I A A I
SEQUiMIAL I V V I
DIRECT I V I I
TEXT I V I V I V I V I

FILE KIN) I A A I A I A I
SECONDARY STORAGE I V I I I I
QUEUE II V II I
TEMINAL I I IV
IMAGNETXC TAPE I I V I

QLFUE KIND I A I II
SOLO I V I I
mimIC I V I I
COPY I V I

TERMINAL KIIN I A I
SCROLL I V V
PAGE I V I
FORM V

COUPLE II A II

A = an attribute or relation which applies to the file node
V = a attribute value vhich the attribute can have for the file node.

The Input and output operations In the packages in vi.s section are expresed as operations on objects

or some file type, rather than directly In terms or th external files. These objects are files which are

Internal to a CAS process (internal files). Internal riles are Identified by file handles. Throughout
this document, the word file is used to mean an Ada external fnle, while In the [LRM] the word ile Is

used to mean an internal fnle. The mode of a file de,'rrmines the Intents with which Its associated file

node can be opened. These corresponding modes and intents are given In TABLE X.

Table X. M04 -- and intents

If the MODE in: the INTENT ou' ; establish the right to:

IN FILE read contents
OUT-FILE write contents
INFfLE read and write contents
APPEND-FILE append Cont er L

103



31 J41\1 kR 9

It Is posstible that a single file node may have more than one access method. as specified by the
predefined attribute ACCE.SS -METHIOD. The value or the attribute ACCESS _METIIOD

determines the packages that may operate upon the file. The predefined values for the attribute
ACCESS _METHOD are SEQUENTIA.L. DIRECT, and TEXT or any list combination or these. A
value or SEQUENTIAL Indicates that the CAIS.SEQUENTIA.L_10 package may be used. A value or
DIRECT Indicates that the Package CAIS.D[RECT_ 10 may be used. A value of TEXT indicates
that the package CAIS.TEXT_ 10 may be used.

The attribute FILE KIND denotes the kind or file that Is represented by the contents or the file
node. The predefined values for the attribute FILE KIND are SECONDARY_ STORAGE.
QUEUE. TERMINAL, and MAGNETIC TAPE. These values determine which packages may be
used to operate on file. as -4hown In TABLE VI111.

File nodes with a FILE -KIND value of QUEUE altso have a predefined attribute QUEUEKIND.
The predefined values for the attribute QUEUE_ KIND are SOLO, MIMIC, and COPY.

File nodes with a FILE -KIND value of TERMINAL also have a predefined attribute
TERMINAL KIND. The values SCROLL. PAGE. and FORM are predefined ror this attribute. In
addition, terminal file nodes will have a value of TEXT ror the attribute ACCESS-_METHOD.

When a QUEUE file node is created with QUEUE -KIND or COPY or MIIC, a relationship of the
predefined relation COUPLE is esttablished from the QUEUE node to the fie node which provides the
qiieue's initial contents.

The above discussion is summarized In TABLE DI.



31 JANI %R
, 

igW-,

Table V'II. Input and oistput packages for file kinds

8econdry Nagnertic
Storage Queue Teraina Tape

.-..... 4 .......... " ---

CAIS.10 CONTROL X I X I X I X I
CAIS.IO DEIINITXONS I X I X I X I X I
CAIS.SEilJrrAL10 X I X I I
CAIS.DIRECT 1 1 I I I
C&IS.T XT IO 1 X X I X I X
CA1S.SCROEL TERMINIAL I II X II
CAIS.PAGE T7MIAL I I X I I
CAIS.PORJ TERMINAL I I X I
CAIS.MAGNiTIC TAPE I I I X I

A secondary storage file In the CAIS represents a disk or other random access storage file. Secondary
storage fies may be created by use of the CREATE procedures specified In the packages
CAIS.SEQUENTIAL_10, CAIS.DIRECT_10, and CAIS.TEXT_JO.

A queue file In the CAIS represents a sequence or information that is accessed in a first-In, first-out
manner. There are three kinds of CAIS queue fles: molo, copy and mimic. A solo queue operates like a
simple queue, initially empty, In which all writes append information to the end and all reads are
destructive. A copy queue operates like a solo queue except that It has Initial contents which are
copied from another file: after the creation of the copy queue, It Is Independent of the file. A mimic
queue operates like a solo queue except that It has Initial contents that are the same as the contents
of another file; after the creation of the mimic queue, the mimic queue and the file are mutually
dependent. This means that. If Information is written to the mimic queue file. It is appended to the
other file as well at an Implementation defined time which Is no later than CLOSE of the mimic queue
file; the effect on the mimic queue file of writing or appending to the other file is implementation
defined. Solo queue files may be created by use of the CREATE procedures In the packages
CAIS.SEQUENTIAL 10 and CAIS.TEXT tO. Copy and mimic queue files may be created by use
of the COUPLE procedure In the package 10_CONTROL.

A terminal file in the CAIS represents an Interactive terminal device. Three kinds of terminal devices
are distinguished in the CAIS: scroll, page and form. These are distinguished because they have
different characteristics which require specialized interfaces. Scroll and page terminals may be
represented either by a single terminal file for input and output or by two terminal files, one for Input
and one for output. The Implementation determines, for each physical terminal, whether It will be
represented by one or two terminal files. If two terminal files are used to represent the terminal input
and output, then the Implementation maintains an implicit association between the two files. A form
terminal Is represented by a single terminal file for both Input and output.

A magnetic tape drive file In the CAIS represent4 a magnetic tape drive. Operalions on magnetic
tape drive fiescan affect either the magnetic tape or the drive. interfaces must be provided outside
the CAJS for the creation of terminal files and magnetic tape drive fnles.

Several predefined attributes are applicable to file nodes. The attributes ACCESS _ METIIOD
FILE_ KIND. QUEUEKIND. and TERMINAL_ KIND provide Information about the contents of a
file node and how it may be accessed.

lii



PROPOSED M.IfL-TD-C 4JS

31 JANXU RN' to&%

5.2.2.17. Determining the time a process ha.. been active

function kAc~iNE TIME (NODE :in MODE TYP)

returnl DURATioN;

Purpope:

This runction returns a value or type DURATIlON representing the value of the predefined
attribite MACHINE _TIME or the proces- nodc identified by NODE.

Parameters:

NODE Is an open node handle Identifying the process node whose attribute is being
queried.

Exceptions:

UTSE _ RROR is raised it the node Identified by NODE is not a process node.

STATUSERROR
Is raised Ir NODE Is not an open node handle.

INTENT -VIOLATION

is raised If the node handle NODE was not opened with ao intent establishing the
right to read attributes.

Additional In terrace:

function MACHINE TIME (NME :in NAME STRING)
return DURATION

is
NODE: NODE-TYPE;
RESULT: DURATION,

begin
OP'E(NDE. NMEI (1=READ ATTRI9UTES)).
RESULT :-z MACHINE TIME (NODE);
c.=S (NODE) ;
return RESULT;

exception
when others a>

CLOSE (NODE)
raise;

end MACHINE TINE;

5.3. CAIS input and output

The CAJS defines tour kinds or riles: secondary storage fites, queue riles, terminal files and magnetic
tape drive rilies. CAIS filies are supported by CAIS Input and output packages as described In TABLE
VIII.

100



OMPNODE. RAWE. CI"RA AT.tIUJE));
RESUTr :' STARTTIVE (NOE);
CLOSE (NODE1)
return RESULT,

exception
When Others =>

CLOSE (NODE);

end START TIME;

5.2.2.18. Determininff the time of termination or Abortion

function FINISH-TIME (NODE :inl NDE 7Mreturn TIME.

Purpose:
This function returns a value or type TIME representing the value or the predenn&.d attribu teFINISH . TrMF, Of the Proree node Identified by NODE.

Paramneters:

NODE I9 An open node hsvv1ile Identifying Ihe Process node whose attribuite Is beingqueried.

Exceptions:

USE3 ERROR Is raised It the node Identified by NODE h; not a proems node.
STATU~S_ ERRORl

Is raised If NODF is not an open node handle.

INTENTVIOLATION
Is raiked Ir the node handle NOOP was not opened with an Intent estabhing theright to read attribu".

Additional Interface:

funlction FINISH TIME (NAME : Inl MANE sRxznireturn TIME

NODE: NODE TYnz
RESULT: TIME;

begin
OPEN (NODE. NAME. (I=READATrMIWJFMj))
RESULT :2 FINISX TIME(gNODE);
CLOSE (NODE);
return RESULT;

exception
when others *>

CLOSE (NODR);
raise;

end FINISH TINE;

go)



31 Jk 410 AIfiS;

Is raised If the node handle was not opened with an intent establishing the right W4

read attributes.

Additional Interface:

function 10 uNiTS (NAmE :in NAm sTING)
return NATURAL

NODE: NODE TYPE;
REStLT: NATURAL:

begin
OPEN(MODE. NAME, (1=>READ ATTNIOJTES));
RESULT := 10 UNITS(H0DE);
CLOSE (MODE);
return RESULT.

exception
when others =>

CLOSE (NODE);
raise;

end i0 uNIT;

6.2.2.15. Determining the time of activation

function START -TIME (NODE : in NODE TYPE)
return TIME;

Purpose:
This function returns a value of type TIMED representing the value of the predefined attribute
START_ TIME of the process node identifled by NODE.

Parameters

NODE Is an open node handle Identifying tbe process node whose attribute is being
queried.

Exceptions:

USE _ERROR Is raised if the node identifled by NOI)E Is no( a proess- node.

STATUSERROR
Is raised If NODE is not an open node handle.

LOCKERROR
Is raised If the node Is locked against reading attributes.

INTENT-_VIOLATION
Is raised If the node handle NODE was not opened with an Intent, establishing the
right to read attribtes..

Additional Interface:

function START -TIME (NAME : in NAWE STRING)
return TIME

in
NODE: NODE-TYPE;



PR0P0'-,ED.MIL,-cTD)-f.4.1

31 JAMI .%R' 19M~

Exceptions:

USE ERROR Is raised If the node Identified by NODE is not a process node.

STATUS ERROR
Is raised If NODE Is not an open node handle.

INTENT VIOLATION
Is raised If the node handle NODE was not opened with an intent establishing the

right to read attributes.

Additional Interface:

function HMLES_OPEN (NAME : in NA E-S'riNG)
return NA URAL

NODE: NODE TYPE;
RESULT: NATURAL:

begin
OPEN(NODE. NAME. (1=>READ ATTRIOUTES));
RESULT := HANDLESOPEN (NOE);
CLOSE (NODE) ;
return RESULT;

exception
when others =>

CLOSE (NODE);
raise;

end HAmNLESOPEN;

5.2.2.14. Determining the number of input and output units used

function I0 UmITS (NODE : in NODE TYPE)
ret7urn NATURAL;

Purpose:

This function returns a natural number representing the value of the predefined attribute
10 _UNITS of the process node Ideolilfed by NODE.

Parameters:

NODE Is an open node handle Identifying the process node whose attribute is being

queried.

Exceptions:

USE-ERROR is raised If the node identified by NODE is not a process node.

STATUSERROR
is raised If NODE Is not an open node handle.

LOCK IRROR
Is raised if the node Is locked against rending attributes.

INTENT _VIOLATION

97



Wr PROPOEDM1IL-STDL)4AIS

31 JANLARZ 19M

NODE is an open node handle Identifying the node of the process to be resumed.

Exceptions:

USIEERROR Is raised if the node identified by NODE Is not a procs node.

STATUSERROR
Is raised if NODE Is not an open node handle.

INTENT_-VIOLATION
is raised If the node handle NODE was not opened with an Intent establishing rights
to read relationships and to write attributes and contents.

ACCESS_-VIOLATION
Is raised If the current process does not have suffcient discretionary access rights to
obtain acess to any node or a process to be suspended with Intent including
READ_-RELATIONSHIPS, WRITE_ ATTRIBUTES and WRITE_ CONTFNTS.

SECURITY_-VIOLATION
Is raised It the attempt to obtain access to the node Identflied by NODE represents
a violation of the mandatory access controls for the CAIS.
SECURITYVIOLATION Is raised only If the Conditions for raising the otn!er
exceptions are not satisfied.

Additional Interface:

procedure RESUMPROCES(NAME: in NAME STRING)
in

NODE: NODE TYPE;
begin

OPEN (NODE. NAME, (READ_-RELATIONSHIPS. WRITE ATTRIM)TES.
WRITE CONrrENrS));

RESUMPROCESS (NODE);
CLOSE (NODE);

exception
when others z

CLOSE (NODE);
raise.

end RESUME PRocESS;

6.2.2.13. Determininit the number of open node handles

function HmAE OPEN (*ODE : In UWDE-TYPE)
return NATURAL;

Purpose:

This function returns a natural number representing the value of the predefined attribute
HANDLES-OPEN of the proess node Identified by NODE.

Parameters:

NODE Is an open node handle Identifying the proce." node who!4e attribute Is being
queried.



PROPOSED NIL- TD-C4I%1'

31 JANIARN I~

Exceptions:

USE ERROR is raised If the node Identified by NODE Is not a process node.

STATUS-ERROR
In raised If NODE Is not an open node handle.

INTENT- VIOLATION
Is raised If the node handle NODE was not opened with an Intent establishing rights
to read relationships and to write attributes and contents.

ACCESS_-VIOLATION
Is raised If the current process does not have sufficient discretionary access rights to
obtain access to any node of a process to be suspended with Intent Inciuding
READ_-RELATIONSHIPS, WRITEATTRIBUTES and WRITECONTENTS.

SECURITYVIOLATION
Is raised If the attempt to obtain access to the node Identified by NODE reprcesents
a violation or the mandatory access controls for the CAIS.
SECURITY- VIOLATION Is raised only If conditions ror raising the other
exceptions are not satisfied.

Additional Interface:

procedure SUSPND PRoc=S(xANE: in NmA-im inG

Is
NODE: NODE 1W!;

begin -

OPEN (NODE. NMEM. (READ RELATIONSHIPS. VUUXTMTI3JTU
11RITIE CONENTS));

SUSPENDPROCESS (NODE);
CLOSE (NODE);

exception
when others =>

CLOSE(NODE);
raIse;

end SUSPENDPRocESS;

Notes:

SUSPENDPROCESS can be used by a task to suspend the process that contains It.

6.2.2.1 . Resuming a proces

procedure REUME.PNoCESSNmiE: In NODE 1W);

Purpose:
This procedure causes the process represented by NODE to resume execution.
RESUME_ PROCESS does not change the process status If the process Is not suspended. After
RESUME_ PROCESS Is called, the PROCESSSTATUS of the idenl med process is READY
provided that the process was In the SUSPENDED status at the time that the resumption took
effect. If the node identified by NODE Is the parent or other process nodes, the other processes
are likewise resumed. If an exception Is raised, none of the processes Is resumed.

Parameters:

95



PROPOSED MIL-STD-CMIS
31 JANUARY 1085

a violation or mandatory access controls In &he CAIS. SECURITY_-VIOLATION is
r. .ed only if the conditions for ralsing the other exceptions are not satisfied.

Additional Interfaces:

procedure maBOrT Pocs5(AME: In AmE IrhIN;
NUULTB: In NER&JLrMinG)

XM: OWE-TYPE;
begin

OrD (NODE. S AM. (READ RELATzOuuuPS. VRl cOWrrirg.
witrrEATrRIBIMS);

ABnOs PRCS(11E, RESUTS);
C6Z nODME).

exception
when others -i,

C.OSE (NODE);
raise;

end AmT-ritoczss;

procedure AWoRPocZss (NOD: in oDE TMp)
is
begin

ABORT PROCESS (NOE. *AORED*);
erd ABORT PRocESS;

procedure ABORT PRocESS (NAME: in NAm-E STIN
is

NODE: NODETIP!;
begin

OPEN (NODE. NME. (ELADRIMATZONSMrPS. WRrTE CoTrTS. WRITE AraMiTE));
ABORT PROCESS (NODE. "ABOTD):
MDS! (NODE);

exception
when others =>

CLOSE (NODE);
raise;

end ABORT-PROCES:

Notes:

ABORT_-PROCESS can be used by a task to abort the process that contains It. It Is
Intentional that LOCKERROR will not be raised by this procedure.

5.2.2.11. Suspending a proce

procedure SUSPEIW PROCESS (NODE: In NODEJYMP);

Purpose:
This procedure suspends the process represented by NODE. After SUSPENDPROCESS Is
called, the CURRENT STATUS of the Identified process Is SUSPENDED, provi-ded that the
process was In the READY status at the time that the suspension took effect.
SUSPEND -PROCESS does not change the process status If the process Is not in the READY
state. If the node Identified by NODE Is the parent of other process nodes, the other processes
are likewise suspended. If an exception Is raised, none of the processes are suspended.

Parameters:

NODE Is an open node handle Identifying the node of the process to be suspended.

94



PROPOSED %1L-STI)-( 4%

31 J.4,5d'ARN 191

Is a list containing parameter information. The list is constructed and can t
manipulated using the tools provided In CA1S.LIST_ UTILITIES

Exceptions:

LOCK _ERROR
In raised if access with Intent READATTRIBUTES to the t lrrent process nod
cannot be obtained due tW an existing lock cn the node.

Notes:

The value of the predefined attribute PARAMETERS Is set during process node creation; see
the Interfaces SPAWNPROCESS, INVOKE-PROCESS and CREATEJOB.

5.2.2.10. Abortinit a process

procedure ABORT PROCESS (NODE: In NODE TYPE;
RESULTS: in) RESULTS STRMING);

Purpose:
This procedure aborts the proem represented by NODE and forces any processes In the subtree
rooted at the identified process to be aborted. The order of the process abortions is not
specified. If the state of the process represented by NODE after return of ABORT_ PROCESS
Is examined, It will be AB3ORTED or TERMINATED; It will be TERMINATED only If the
process terminated before ABORTPROCESS took effect. The node associated with the
aborted process remains until explicitly deleted. If an exception is raised, none of the processes
are aborted.

Paramnewes:

NODE is an open node handle for the node of the process to be aborted.

RESULTS Is a string to be appended to the RESULTS attribute of the node represented by
NODE.

Exceptions:

USEERROR Is raised If the node Identified by NODE Is not a process node.

STATUS ERROR
Is raised If NODE is not an open node handle.

INTENT- VIOLATION
Is raised If the node was not opened with an Intent establishing rights to read
relationships rind to write attributes and content.

ACCESS -VIOLATION
Is raised If the current process does not have sufficient discretionary access control
rights to obtain access to any node or a process to be aborted with Intent Including
READ REI.ATIONSIIIP1S, WRITI' ATTRIBUTES and WRITE_ CONTE NTS.

6 SECIJRITY VIOLATION
Is raised if the attempt to obtain s'f e'ss wo the node Identified by NODI~ represeits

93



PROPOSED MII-KTP-( ..

31 JAN AR) K,

5.3.2.3. Opening a direct input or output file

procedure OPEN(FILE: In Out FILE TYPE;
iODE in XODE rYPE;
MODE: in FILE MODE);

Purpose"

This procedure opens a file handle on a file, given an open node handle to the file node; each
element of the file is directly addressable by an index.

Parameters:

FILE Is a file handle, Initially closed, to be opened.

NODE is an open node handle to the file node.

MODE Indicates the mode or the file.

Exceptions:

USE ERROR Is raised If the attribute ACCESS METHOD of the file node does not have the
vaJue DIRECT. If the element type or the file does not correspond with the element
type or this Instantlation or the CAIS.DRECT _10 package, or if the mode is
APPENDFILE.

STATUSERROR
is raised if FILE is an open file handle at the time of the call on OPEN or It NO!
Is not an open node handle.

INTENT VIOLATION
is raised if NODE was not opened with an Intent establishing the access rights
required for the MODE, as specified In TABLE X.

Additional Interface:

procedure OPEN(FILE: in out FILE _TYPE;
NAME: In NAME STRING;

ODE: in FILENODE
In

NODE : UODE_TYPE;
begin

Case ODWE IS
when IN FILE => OPE.N(NODE. NAE,( I=>READ CONTENTS));
when OUT FILE => OPEN(NODE. NAE. (=>XRITE_COXTEX));
when INOUTFILE =>OPEN (NODE. NAME.

(READ CONTNTrS WRITE CONTENrS));
when APPENDFILE =>raise Um-EREaR;

end came;
OPEN(FILE. NODE. MODE)
CLOSE (NODE);

exception
when others =>

CLOSE (FILE);

CLOSE (NODE);
raise;

end OPEN;

107



PROtV"E I T H( ,

31 Jtht 4fRt% i(U&

No's:

The effects on the open file handle or closing an open node handle on Its node are
implementation-defined. In particular, no assumption can be made about the access protection
provided by the node model.

5.3.2.4. Deleting a direct input or output file

procedure DELTEZ(FILE:in out Frz TTPE);

Purpose:

In addition to the semantics specified In [LRMI, ir the node associated with the open file handle
FILE is no. already unobtainable, this node is made unobtainable as if a call to the

DELETENODE procedure had been made. If this node Is already unobtainable by this call.
no exception other than STATUS-ERROR may be raised by this procedure.

Parameters:

FILE Is an open file handle on the nle being deleted.

Exceptions:

NAME_ERROR
is raised If the parent node or the node associated with the file identified by FfiJ is

Inaccessible.

USE ERROR is raised if any primary relationships emanate from the node associated with the rile

Identified by FILE.

STATUSERROR
Is raised If FILE is not an open file handle.

LOCK _ERROR
is raised It access with intent WRITE RELATIONSHIPS to the parent of the node
to be deleted cannot be obtained due to an existing lock on the node.

ACCESS_ VIOLATION
Is raised if the current process does not have sufficient discretionary access control

rights to obtain access to the parent or the node to be deleted with Intent
WRITE RELATIONSHIPS or to obtain access to the node to be deleted with
Intent EXCLUSIVEWRITE. ACCESS VIOLATION is only raised If the
conditions for NAME ERROR tre not present.

SECI TRITY_ VIOLATION

is raised If the operation represent" a violation of mandatory access controls.
SECURITY _VIOLATION Is raised only ir the conditions for other exceptions are

not present.

l0"



PROPO',Ef) MII,STP-( A[-

31 JA.'ARN JAR!,

5.3.3. Package SEQUENTIAL-O

This package provides facilities for sequentially accessing data elements In CAJS fries. [LRM defines
what constitutes an element. These facilities are comparable to those described In the
SEQUENTLAL_ 10 package of [LRM].

The package specification and semantics of the CAIS.SEQUENTIAL_ 10 are comparable to those or
the [LRM] package SEQUENTLAL 10. All subprograms present In the [LRM' package
SEQUENTIAL 10 are present In this CAIS package. The following sections demonstrate only the
specifications and semantics that differ.

5.3.3.1. Subtypes and constants

subtype FILE-TYPE is CAIS.IODEFINITIONS.FILE TYPE;

subtype FILE-MODE Is CAIS. IO DEFINITIONS.FILE MODE;

FILETYPE describes the type for file handles for all sequential Input and output operations.
FILE MODE Indicates whether Input operations, output operations or both can be performed on the
sequential-access rile. A mode of APPEND _ FILE causes any elements that are written to the
specifled file to be appended to the elements that are already in the file.

5.3.3.2. Creating a sequential input or output file

procedure CEATE(FILE: In out FILE TYPE;
BASE: In NODETYPE;
KEY: In RELATIONSHIP KEY := LATESTKEY;
RELATION: in RELATIONNARE := DEFAULT-RELATION;
MODE: in FILE-NODE : INOUT_FILE;
FORM: in LIST TYPE : EMPTYLIST;

ATTRIBUTES: In LIST TYPE EMPTY_LIST;
ACCESS_CONTROL: in LIST TYPE EMPTYLIST;

LEVEL: in LIST-TYPE EMPTY LIST);

Purpose:

This procedure creates a rile and Its rile node; each element of the tile Is sequentially accessible,
The attribute ACCESSMETHOD Is assigned the value "(SEQUENTIAL)" as part of the
creation.

The FORM parameter Is used to provide rile characteristics concerning the creation of the file.
The predefined rile characteristic ESTIMATED _SIZE may be used to specify an approximation
to the number of storage units (e.g., bytes or blocks) that should be writable to the file. The

ESTIMATED_ SIZE characteristic is specified as "(ESTIMATED_ SIZE => n)", where "n" is

any NATURAL number.

The ATTRIBUTES parameter defines and provides Initial values for attributes of the node. The

ACCESS_ CONTROL parameter specifies Initial access control information to be established for

the created node (see Section 4.4.2.1 for details).

10



wr

PROPOED) %1IL-STD-C.,IS

31 JANtARY 19*5

The LEVEL parameter specifies the security level at which the file node Is to be created.

The default value for the attribute FILE _KIND for the file node is
SECONDARY _STORAGE. The default value may be overridden by explicitly specifying a
value of QUEUE In the attributes parameter (i.e., "(FILEKIND => QUEIUE)"). In which
case the value of the attribute QUEUEKIND is SOLO.

Parameters:

FILE is a file handle, Initially closed, to be opened.

BASE Is an open node handle to the node which will be the source of the primary

relationship to the new node.

KEY is the relationship key of the primary relationship to be created.

RELATION Is the relation name of the primary relationship to be created.

MODE indicates the mode of the file.

FORM Indicates file characteristics.

ATTRIBUTES defines initial values for attributes of the newly created node.

ACCESSCONTROL
defines the initial access control information associated with the created node.

LEVEL defines the classification label for the created node.

Exceptions

NAME_ ERROR
is raised If a node already exists for the node specified by KEY and RELATION or
if KEY or RELATION is syntacticraly illegal or If any node Identifying a group
specified In the given ACCESSCONTROL parameter is unobtainable or

inaccessible.

USE-ERROR Is raised if any of the parameters ACCESS CONTROL, LEVEL or ATTRIBUTES
is syntactically or semantically Illegal. USE ERROR is also raised if interpretation
of the ATTRIBUTES parameter would result in creation of any predefined
attribute other than FILE _ KIND. USE-ERROR Is also raised if RELATION is
the name of a predefined relation that cannot be created by the user.

STATUSERROR
Is raised It BASE Is not an open node handle or it FILE Is an open file handle prior

to the call.

INTENTVIOLATION
is raised If BASE was not opened with an intent establishing the right to append

relationships.

110



31 JANI AR) ION,

SECURITYVIOLATION
is raised if the operation represents a violation of mandatory access controls.

SECURITY VIOLATION Is raised only If the conditions for other exceptions are
not present.

Additional Interface:

procedure CREATE(FiLE: In out FiLE -"TPE;
NAME: In MAME STRING;
MODE: in FILE MODE :MUT FILE;
FORM: in LIST TYPE IMPTY LIST.
A"TRIBflES: in LIST TYPE EwPTY LIST;
ACCESS CONTROL:in LIST TYPE := WTYLIST;
LEVEL: in LIST-TYPE := DTLIST)

is
BASE: MODE TYPE;

begin
OPEN(BASE. BASE-PATH(NAME). (1=>APPEND RELATIONSHIIPS));
CREATE(FILE. BASE. LAST KEY(NMAM). LAST RELATION(NAME).

MODE. FORM. ATTRIBJTES. ACCESSCOTROL, LEVEL);
CLOSE (BASE) ;

exception
when others =>

CLOSE(FILE);
CLOSE (BASE);

raise;
end CREATE;

5.3.3.3. Opening a seQuential input or output rile

procedure OPEN(FILE: in out FILE TYPE;
NODE: in NODE TYPE;

NODE: in FILENODE);

Purpose:

This procedure opens a le handle on a file, given an open node handle on the file node; each
element of the file is sequentially accessible.

Parameters:

FILIE Is a rile handle, initially closed, to be opened.

NODE is an open node handle to the ile node.

MODE Indicates the mode of the file.

Exceptions:

USE ERROR Is raised if the attribute ACCESS METHOD of the file node does not have the
value SEQUENTIAL or if the element type or the file does not correspond with the
element type of this instantlation or the CAISSEQUENTIAI, 10 package.

USI EIRll0)i is also raised if the node identified by NOI)E ha a value of QIT EVE
for the attribute FILE KiNI) and a value of MIMIC for the attribute

Q ',UE" _KIND and the mimh" queue file Identified by FILE is being opened with
MOI)E other than IN FILE but the coupled file (.s.e Section 5...5.13) h,; been

deleted.

ti Iil



PROPO) FD fIL-STD-(AJ1
-

31 JANMARN 19A

STATUSERROR

is raised If FILE is an open fie handle at the time of the call on OPEN or If NODIE
is not an open node handle.

INTENTVIOLATION
is raised If NODE was not opened with an Intent establishing the acces r ghts
required for the MODE. as specified In TABLE X.

Additional Interface:

procedure OPE(FILE. in out FILE_TYPE;
NAME. in KAN(E MTING;
UWE: in FILE MODE )

NODE : UODE TYPE;
begin

cAe UO E is
when IN -FILE => OPEN(NODE. KANE. (1=>READ C0NTENTS));
when OT _FILE => OPEN(EODE. NANE. (1=>WRITE CONTENT));
when INoU-_FILE=>OPEN (MODE. KAE,

(READ CONTENTS WRITE CONTENTS));
when APPEND FILE => OPEN(NODE, KAE.(1=1APPNDCONTENTS));

end case;
0PEN(FILE. NODE. NODE);
CLOSE (NODE);

exception
when others =>

CLOSE (FILE)
CLOS (NODE)

raise:
end OPEN;

5.3.3.4. Deleting a sequential input or output file

procedure DELrTE(FILE:in out FILE-TYPE);

Purpose:

In addition 1,) the semantics specified In (LRM;, If the node assoclated with the open file handle
FILE Is not already unobtainable, this node Is made unobtainable as if a call to the
DELETENODE procedure had been made. If this node Is already unobtainable by this call, no
exception other than STATUS ERROR may be ralsed by this procedure.

Parameters:

FILE is an open fie handle on the file being deleted.

Exceptions:

NAME_ ERROR

is raised If the parent node of the node as-olated with the file identified by FILE Is
Inaccessible.

TSEERROR Is ralsd If any primary relationships emanate from the node av-kwi:ted with the' flh

Identified by FILE,

STATUS_ ERROR

is raised if FIILE is not open file handle.

112



PROPO',1D h1IIQTID-( Al,

31 JANR R) 199,

LOCK-ERROR
Is raised If access with intent WRITE_ RELATIONSHIPS to the parent of the node
to be deleted cannot be obtained due to an existing lock on the node.

ACCESSVIOLATION
is raised It the current process does not have sufficient discretionary access control
rights to obtain access to the parent or the node to be deleted with Intent
WRITE_ RELATIONSHIPS or to obtain access to the node to be deleted with
Intent EXCLUSIVE WRITE. ACCESS VIOLATION Is only raised it the

conditions ror NAME-ERROR are not present.

SECURITYVIOLATION
is raised If the operation represents a violation or mandatory access controls.

SECURITYVIOLATION Is raised only ir the conditions for other exceptions are

not present.

5.3.4. Package TEXTIO

This package provides facilities for the Input and output or textual data to CAIS flies. [LRMI defines
what constitutes an element or data. These facilities are comparable to those specified in the package

TEXT 10 in [LRMI. All subprograms present In the [LRMj package TEXT _10 are present in this
CAIS package. The following sections demonstrate only the specifications and semantics that differ.

5.3.4.1. Subtypes and constants

subtype FILErfPE in CAIS. 10 DEFINITIONS. FILE TYPE;

subtype FILE-NODE in CAIS.ID_DEFINITINS.FILEMODE;

FILE_ TYPE describes the type tor file handles for all text Input and output operations.
FILL _MO[)E indicates whether input operations. output operations or both can be performed on the
text file. A mode of APPEND FILE causes any text written to the specified file to be appended to
the text that Is already In the file.

5.3.4.2. Creating a text input or output file

procedure CREATE(FILE: in out FILETYPE;

BASE: In NODE TYPE;

KEY: in RELATIONSHIP KEY := LATEST KEY;
RELATION: in RELATION NAKE := DEFAULT RELATION;
MODE: in FILEMODE INOUT FILE;
FORM: In LIST-TYPE := EMPTYLIST;
ATTRIBTES: in LISTTYPE := EM PTY LIST
ACCESS CONTROL: In LIST TYPE ::EMPTY LIST;
LEVEL: In LIST TYPE : TY LIST);

Purpowe:

This procedure creates a file and its file node; the rile is textual. The attribute

ACCESS METIIOD) is assigned the value "(TEXT)* as part of the creation.

113



PROPO'EL 
h1L,-STD-CA1SIP(~31 J d'Ifl 3985

-RThe FORM parameter is used to provide hie characteristics concerning the creation of the

external file. The predefined fie characteristic ESTIMATED _ SIZE may be used to specify an
approximation to the number of storage units (e.g.. bytes or blocks) that should be writable to
the file. The ESTIMATEDSIZE characteristic is specified as O(ESTIMATEDSIZE => n)",
where "n" i any NATURAL number.

The ATTRIBUTES parameter defines and provides Initial values for attributes of the node. The
ACCESS CONTROL parameter specifies initial access control Information to be established for

the created node (see Section 4.4.2.1 for details).

The LEVEL parameter specifies the security level at which the file node is to be created.

The default value for the attribute FILE KIND is SECONDARY_ STORAGE. The default
value may be overridden by explicitly specifying a value or QUEUE In the ATTRIBUTES

parameter i.e., "(FILE_ KIND => QUEUE)"). If the value of FILEKIND is QIUEL'E, the
default value of the attribute QUEUEKIND is SOLO.

Parameters:

FILE Is a file handle, Initially closed, to be opened.

BASE Is an open node handle to the node which will be the source of the primary

relationship to the new node.

KEY Is the relationship key of the primary relationship to be created.

RELATION is the relation name or the primary relationship to be created.

MODE Indicates the mode of the file.

FORM Indicates file characteristics.

ATTRIBUTES deflnes initial values for attributes or the newly created node.

ACCESSCONTROL
defines the Initial access control Information associated with the created node.

LEVNEL defines the classification label for the created node.

Exceptions:

NAMEERROR
is raised if a node already exists for the node specified by KEY and RELATION or

If KEY or RELATION Is syntactically Illegal or ir any node Identlf1)ng a group

specified in the given ACCESSCONTROL parameter Is unobtainable.

USE ERROR is raised If any of the parameters ACCESS_ CONTROL, LEVEL or A'rTRII'TI.S
Is syntactically or semantically Illegal USE_ ERROR is also rakled If hil.rprelation

of the A'I"rIiWTE'S parameter would rcsiili in modification or crealon or a
predefined attribute other than FILE _ KIN). USE _-ERROR Is also r:tised If
RELATION Is the name of a predefnned relation which cannot be created by the
user.

114



PRPHOL ', 1.TD-( 1,-

31 JANr AR) lok-,

STATU'SERROR
is raised if BASE is not an open node handle or If FILE Is an open file handle prior
to the call.

INTENT VIOLATION
Is raised It BASE was not opened with an Intent establishing the right to append
relationships.

SECURITY VIOLATION
is raised if the operation represents a violation of mandatory access controls
SECURITY_ VIOLATION Is raised only If the conditions for other exceptions are
not present.

Additional Interface:

procedure CREATE(FILE: In out FILETYPE;
RAMP: in NAME STR ING;
MODE: In FILE NODE : INOUTFILE;
FORM: in LIST TYPE EMPTY LIST;
ATTRIBUTES: In LIST TYPE := PTYLIST;
ACCESSCOMTROL: In LIST TYPE : EMPTY LIST;
LEVEL: in LIST TYPE :: EMPTYLIST)

BASE : NODETYPE;
begin

OPEN(BASE. BASE_PATH(NAME). (I=>APPENDRELATIONSHIPS));
CREATE(FILE. BASE. LAST Y(NAME), LAST RELATION(NAME).

MODE. FORM. ATYRI~TES, ACCESS_CONTROL. LEVEL);
CLOSE (BASE)

exception
when others =>

CLOSE (FILE) ;
CLOSE (BASE);

raise;
end CREATE;

5.3.4.3. Opening a text input or output file

procedure OPEX(FILE: In out FILE TYPE;

NODE. In NODETYPE;
MODE: In FILEMODE);

Purpose:

This procedure opens a file handle on a fle that has textual contents, given an open node handle

on the fle node.

Parameters:

FILE is a fle handle, Initially cloued, to be opened.

NODE Is an open node handle to the file node.

MODE Indicates the mode of the fle.

Exceptions:

LI5



PROPC)4) MII-STD-(AJS

31 JAN! NRN aQ,

USE ERROR Is raised If the attribute ACCESS METHJOD of the rile no( L does not have the

value TEXT -or the element type or the file does not corresp, .d with the element

type o this Instantiation of the CAIS.TEXT_IO package. USEERROR is also

raised If the node Identified by NODE has a value of QUEUE for the attribute

FILE KIND and a value of MIMIC for the attribute QtUEUE_ KIND and the

mimic queue file Identified by FILE is being opened with MODE other than

IN FILE but ,he coupled file (see Section 5.3.5.13) has been deleted.

USE ERROR Is also raised If the node Identified by NODE has a value of

TERMINAL or MAGNETICTAPE for the attribute FILEKIND and the MODE

Is APPEND FILE.

STATUSERROR

Is raised If FILE Is an open file handle at the time o the call on OPEN or If NODE
Is not an open node handle.

INTENT VIOLATION
Is raised It NODE has not been opened with an Intent establishing the access rights

required for the MODE. as specified In TABLE X.

Additional Interface:

procedure OPEN(FILE: in out FILETYPE;
KNE: in NAMESTRING;
MODE: in FILE_MODE)

is
NODE : HODETYPE;

begin
case NODE is

when IN_FILE => OPEN(NODE. NAME.(t=,READ CONENTS));
when OtrFILE => OPEN(NODE. NAME. (1=>WRITECONTENTS));
when INOUT FILE =>OPEN(NODE.NAME.

(READ CONTENTS. WRITE CONTENTS));

when APPENDFILE => OPEN(NODE. NAME, (I=>APPENDCONTENTS));

end case;
OPENW(FILE. NODE. NOE);
CLOSE (NODE);

exception
when others =>

CLOSE (FILE) ;
CLOSE (NODE);

raise;
end oPEN

Notes:

If the file Identified by FILE Is a mimic queue file which Is being opened to Pad and its coupled

file (see Section 5.3.5.13) has been deleted or has fewer elements than e vected to be In the

mimic queue rile (e.g., If some Of the contents or the coupled rile have been deleted), read

operations on the mimic queue file will encounter an end o file.

5.3.4.4. Deleting a text input or output file

procedure DELETE(FrILE: In out FILETlPE ;

Purpose:

In addition to the semantics specified In [LRMJ. the node assoclated with he open rile handle

FIIF Is made unobtainable as It a call to the DEIETENODE procedure hi:,ll been made.

116



31 JA ,\1 ' 2 1 .

Parameters:

FILE is an open flle handle on the file being deleted.

Exceptions:

NAMEERROR
Is raised If the parent node of the node associated with the file Identifled by FILE is

inaccessible.

USE _ERROR Is raised If any primary relationships emanate from the node associated with the file

Identified by FILE.

STATUS ERROR

Is raised ir FILE Is not an open file handle.

LOCKERROR
is raised if access with intent WRITE REIATIONSHIPS to the parent of the node

to be deleted cannot be obtained due to an existing lock on the node.

ACCESSVIOLATION

Is raised If the current process does not have sufflcient discretionary access control

rights to obtain access to the parent of the node to be deleted with Intent

WRITE_ RELA-TIONSIIII'S or to obtain access to the node to be deleted with

Intent EXCLUSIVE WRITE. ACCESS VOIATION Is only raised If the

conditions for NAME ERROR are not present.

SE(CURITY VIOIATION
Is raised if the operation represents a violation of mandatory access controls.
SECURITY -VIOLATION Is raised only if the conditions for other exceptions are
not present.

5.3.4.5. Resetting a text file

procedure REsET(FILE: in out FILE TYPE;
MODE inl FILE-MODE) ;

Purpose:

In addition to the semantics specified in [LRM I . application of this procedure to a file which
represents a magnetic tape drive will cause the magnetic tape to be rewound to the filemark

immediately preceding the current tape position. See Section 5.3.9 for more information on

magnetic tapes.

Parameters:

FILE Is an open file handle on the file begin reset.

MODE Indicates the mode of the file.

Exceptions:

USEI_ ERROR Is raised If the node associated with the file Identified by FILE has a value of
TERMINAL or MAGNfTIC TAPPE for tho attributte FILE KIN) and the NOl)"
Is APPEND _FILE.

117



* "t O~utt operation,,

104

F P RO0PO E 1) MtlLSTD-C.A1S

33 JA%t ',Ft% IQ&%5

5.3.4.6. Reading from a text rle

procedure GTrl...)

Purpose:

Thesw procedures read characters from the specfined text rile.

For all values of the attribute FILE_-KIND) the CAIS deflnes only reading of the printable
ASCII characters plus the format efl'ectors called horizontal tabulation, vertical tabulation.
carriage return, line feed. and form feed. All of the printable characters plus the horizontal
tabuilation and vertical tabulation characters may be read as characters. The characters carriage
return and line feed are to be treated as line terminators whether encountered singly or together
(I~e.. CR. LF. CRLF. and LFCR are line terminators). The character form feed is to be treated
as the page terminator.

When text Is being read from a rile whose rile node attribute FILE-_KIND has the value
TERMINAL. It Is expected that most Implementations will provide facilities ror editing the Input
entered by the user before making the characters available to a program for reading.

5.3.4.7. Writing to a text ile

procedure PUYT(...)

P ur pose:

These procedures write characters to the specified file.

The CAIS supports the transfer of information to and from a single magnetic tape volume. Data
transferred to and from Magnetic tapes may consist of the following characters:

Cbaractero Representation of Character.

all printable Characters corresponding ASCII characters
horizontal tab ASCII.HTr
vertical tab ASCII VT

carriage return ASCII.CR
line terminator ASCIILFr
page terminator AsCII.PT
file terminator zero or more fll Characters followed

Imediately by a tape mark
fill character ASCII.NUL

Use of other characters Is not defined.

6.3.4.8. Settinit the inpDut rle

procedure SET iuU(FILE In IfLE7ITIE);

Purpose:

In addition to the semantics specified In the !LRMJ. the file node associated with the file
identfincd by FILE becomes the target of the relationship of the predefined relation
CURRENT_ INPUT of the current process node.

Parameters:

Its



Fii 1.1Is an open flc handle.

Es e pt ion!s

MOI)E _ERROR

Is raised if the mode or the r, Identified by FILE 18 Ot'T FIL. or
APPEND_ FILE.

STATUSERROR
is raised if FILE Is not an open flie handle.

[OCK ERROR
Is raised If the cuirrent proems node is LOCKed against writing relationships.

5.3.4.9. Setting the output rle

procedure sET oJTLrr(FrLE :in FILE TYPE);

Purpose:

In addition to the semantics specified In the [LRMII. the fie node associated with FILE becomes
the target of the relationship of the predefined relation CURRENT OUTPUT or the current
process node.

P a ramete rs.

FILE Is an open fle handle.

Exceptions:

MOI)E _ERROR

Is raised if the mode or the fie Identified by FILE Is IN-FILE.

STATUS_ ERROR

is raised If FILE Is not an open rile handle.

[OCK ERROR
is4 raised If the current process.- node Is4 LO( Red against writing relationships

5.3.4.10. Setting the error file

procedure SET uRO(FiLz : in FILTYPE).

P u rpose:

The nie node ssocialed with the fie identified hi' FILE becomes the target or the relationship or
thv prcdeflnned relation CURRFNT ElIIIOR of the cuirrent process node.

Plarameterq:

FILK Is an open fie handle.

Exreptionqs



PFc.oPO";ED %I11, TL"( Ml

31 JANt'i 19KS

MODE ERROR
Is raised if the mode of the fie Identified by FILE is IN FILE.

STATUS ERROR
Is raised If FILE is not an open file handle.

LOCKERROR
Is raised If the current process node Is LOCKed against writing relationships.

5.3.4.11. Determining the utandard error file

function srTAMIOMD_3EROR return FILE_TY;PE

Purpose:

This function returns an open rile handle to the target node of the relationship of the prederined
relation STANDARD ERROR that w&-i set at the start of program execution.

Parameters:

None.

Exceptions:

LOCKERROR

Is raised If the current process node Is locked against reading relationships.

5.3.4.12. Determining the current error file

function cuaRExT_EROR return FILE_TYPE;

Purpoe.

This function returns an open rle handle to the target node of the relationship of the prederfined
relation ( '1RRENT _ ERROR which is either the standard error rile or the rile specified in the
most recent invocation of SET ERROR In the current process.

Parameters:

None.

Exceptions:

LOCK _ERROR
Is raised If the current process node is locked against reading relationships.

5.3.5. Package 10-CONTROL

This package defines facilities that may be used to modify or query the functionality of CAIS flies. It

provides for Ls-soclatlon of input and output text files with an output logging file. It also provides
facilities for rorcing data from an Internal rile to Its assRocIated external rile, for manipulation of
function keys and prompt strings and for creating mimic and copy queues.

120



31 1 AM ,R)~ 1087

'arameters-

TERMINAL Is an open file handle on an output terminal rile.

KIND Is the kind (horizontal or vertical) or tab stop to be removed.

Exceptions:

USE-ERROR is raied If TERMINAL is not the value of the predefined attribute FIIC KIN) or
SCROLL is not a value or the predefined attribute TERMINAL_ KIN ) of the flie
node &vwlated with the file Identified by the parameter TERMINAL, )r if there is
no tab stop or the designated kind at the active position.

MODEERROR
is raised i the file identified by TERMINAL is of mode IN-FILE.

STATUS ERROR
is raised If TERMINAL is not an open file handle.

DEXICE ERROR
Is raised If an input or output operation cannot be completed h 'cause of a

malfunction of the underlying system.

AddIlI(nal In terf ae
procedur -.LE4RTAB(KIND in TAB-ENUWE ATION := HORIZONTAL)

begi n
CLZA TAB(CUHREW? -JTPVT, KIND);

end aXAiTAB.

5.3.6.7. Advancing to the next tab position

procedure TAB(TM IXk: in FILE - PE;
KIND: In TAB EWIE.ATION := HORIZONTAL;
COLYrT in POSITIV1 := 1);

Purpose:

This procedure advances the active position COUNT tab stops. Horizontal advancen .nt causes
a change in only the column number of the active position. Vertical advancemeni causes a

change In only the row number of i he active position.

Parameters:

TERMINAL Is an open file handle on an output terminal file.

KIND Is the kind (horizontal or vertical) of tab to be advanced.

COUNT Is a positive integer indicating the number or tab stops the active poulion is to
advance.

Exceptions:

134



return TEUINAL. SIZE(CURN_OUTPUT);

end TimiAL SIZE;

5.3.6.5. Setting a tab stop

procedure sEr T-A("M mIKAL: in FILETYPE,
KIND, in TAB ENUMERATI0N := HORIZOTAL);

Purpose:
This procedure establishes a horizontal tab stop at the column of the active position If KIND Is
HORIZONTAL. or a vertical tab stop at the roA or the active position if KIND is VERITICAL.

Parameters:

TERMINAL Is an open fie handle on an output terminal fle.

KIND is the kind (horizontal or vertical) or tab stop to be set.

Exceptions:

USE ERROR is raised if TERMINAL is not the value or the predeflned attribute FILE KIND or
SCROLL is not a value or the predeflned attribute TERMINAL KIND of the eie
node associated with the fIle Identified by the parameter TERMINAL.
USE ERROR is also raised If the number or rows ror the terminal is unlimited and
KIND Is VERTICAL.

MODEERROR
is raised If the fie Identified by TERMINAL is of mode IN FILE.

STATUS ERROR
is raied Ir TERMINAL is not an open rile handle.

DEVICEERROR
Is raised it an Input or output operation cannot be completed because or a
mairfnction of the underlying system.

Additional Interface:
procedure rt. TAB (KIND: in TAB_-NUMETIOU := HIIZONTAL)
If
begin

ME TAB (CURREWNT OTPT. KIND);
end SEr TAB;

6.3.6.6. Clearing a tab stop

procedure CLEARTA(ToMwma.: In FILE TmY;
KIND: in TAB Er 0ATION1 := HORIZONTAL);

Purpose:
This procedure removes a horizontal tab stop from the column of the active position If KIND is
IIORIZONTAL or a vertical tab stop from the row of the active position If KIND Is
VERTICAL.

133



PROPOSED %tl-.';TD-CAIS

31 JANVAR) 19$.5

MODEERROR
is raised ir the rile Identified by TERMINAL is of mode IN _FILE.

STATUSERROR
is raised If TERMINA.L Is not an open rile handle.

DEVICE-ERROR
is raised If an input or output operation cannot be completed because of a
malfunction of the underlying system.

Additional Interface:
function GET POSITION

return POSITION-TYPE
is
begin

return GET -POSITION (CU)RRENTWUTPUr);
end GET POSITION;

6.3.8.4. Determining the size of the terminal

function TERMNINALSIZE(TERMINAL: in PILE TYPE)
return POSITION TYPE;

Purpose:

This function returns the maximum row and miaximum column of the output terminal Mie
Identified by TERMINAL. A value of zero for the row number indirates that the row number is
unlimited.

Parameters:

TERMINAL Is an open fMe handle on an output terminal rile.

Exceptions:

USE ERROR is raised if TERMINAL is not the value or the predefined attribute FILE _ KIND or
SCROLL is not a value of the predefined attribute TERMINAL -KIND or the fie

node associated with the rile Identified by the parameter TERMINAL.

MODEERROR
Is raised if the file identified by TERMINAL Is of mode IN-_FILE.

STATUSERROR
Is raised If TERMINAJL Is not an open file handle.

DEVICE -ERROR

In raised if an input or output operation cannot be completed lk-cause of a
malfunction or the underlying system.

Additional Interface:
function TERwmiA siZE

return POSITION-TYPE
ism
begin

132



PROPOSED) Sltt-NTU-( Al-
31 JANU4J"\ 199,

Parameters:

TERMINAL Is an open nie handle on an output terminal fie.

POSITION is the new active position In the output terminal file.

Except ions:

USEERROR Is raised ir TERMINAL is not the value of the predefined attribute FILE_- KIND, or
SCROLL Is not a value or the predefined attribute TERMINAL_- KMN or the nie
node associated with the file Identified by the parameter TERMINAL.

MODEERROR
Is raised if the file Identified by TERMINAL Is or mode IN- FILE.

STATUTSERROR
Is raised If TERMINAL Is not an open file handle.

LAYOUTERROR
Is raised It the position does not exist on the terminal or the position precredes the
active position.

I)ENICE ERROR
is raised If an Input or output operation cannot be completed because or a
malfunction or the underlying system.

Additional Interface:

procedure SET PosriON (POSITION: in POSITION-TYPE)
is
begin

SET POSITION (CURRETrUTT. POSITION);
end wriPsinzo;

6.3.8.3. Determnininit the active position

function GET POSITION (TUNIAL: In riLE TYPE)
return POSITION TYPE;

Purpose:
This runction returns the active position of the output terminal fie identified by TERMINAL.

Parameters:

TERMINAL in an open nie handle on an output terminal file.

Exceptions:

UISE_- ERROR Is raise*d If TERMINAL Is not the value or the predefined attribute FilE KIND or
SCROLL, Is not a value or the predefined attribute TERMINAL KIND) Of the nie
nodle asociaed with the file Identified by the parameter TERMINAL.

131



PROPOED SIJIL-TD-CAJS

to open with MODE other than IN-FILE a mimic queue file whose coupled file has been deleted

will raise a USE ERROR exception.

5.3.6. Package SCROLLTERMINAL

This package provides the functionality of a scroll terminal. A scroll terminal consists of two devices:

an Input device (keyboard) and an associated output device (a printer or display). A scroll terminal

may be accessed either as a single file of mode INOUTFILE or as two fles: one o mode IN FILE
(the keyboard) and the other of mode OUT FILE (the printer or display). As keys are pressed on the
scroll terminal keyboard, the transmitted characters are made available for reading by the

CAIS.SCROLL TERMINAL package. As characters are written to the scroll terminal file, they are

displayed on the output device.

The output devices for scroll terminals have positions In which printable ASCII characters may be
graphically displayed. The positions are arranged Into horizontal rows and vertical columns. Each

position is Identifiable by the combination of a positive row number and a positive column number.
An output device for a scroll terminal has a fixed number of columns and might have a fixed number
of rows. The rows are Incrementally indexed starting with one after performing the NEW _ PAGE
(see Section 5.3.6.19) operation. The columns are Incrementally Indexed starting with one at the left

side of the output device.

The active position on the output device of a scroll terminal Is the position at which the next
operation will be performed. The active position Is said to advance If (1) the row number of the new
position is greater than the row number of the old position or (2) the row number of the new position

is the same as the row number of the old position and the new position has a greater column number.
Similarly. a position Is said to precede the active position if (I) the row number of the position is less
than the row number of the active position or (2) the row number of the position Is the same as the
row number of the active position and the column number of the position Is smaller than the column

number of the active position.

5.3.6.1. Subtypes

subtype FILE TYPE Is CAIS. ODEFINITIONS.FILETYPE;

subtype FJNCroN KEY DESCRIPTOR is
CAIS. ID DEFINITIONS. FtNC"IONKEYDESCRIPTR;

subtype PosrToN TYPE is CAIS. 10_DEFDNrioNS.P0SiTioN TYPE;

subtype TAB nImATIOI is CAIS.IC0DEFINITIONS.TAB ENUiITE3N;

FILE_ TYPE describes the type for file handles. FUNCTION KEY DESCRIPTOR Is used to
obtain Information about function keys read from a terminal. POSITION-TYPE describes the type or
a position on a terminal. TAB_ ENUMIERATION Is used to specify the kind of tab stop to be set.

6.3.6.2. Setting the active position

procedure SETPOSITIOU(TIMIAL: In FILETYPE;
POSITION: In POSITION TYPE);

Purpose:

This procedure advance" the active position tW the specifie( POSITION In the output terImin:il

file idvnlifned by TERMINAl.

130



31 JA.NtAR)~ 19.5

CLOS (BASE)
exception

when others =>
CLOSE (BASE);

raise;
end COtU;

procedure couPL.E (qxEEAsE: In NODETYPE;

QUEUEKEY: In RELATIONSHIP-KEY
LATST KEY;

JEIE-RELAT!oN: In RELATION-x NA =

DEFAULT-RELATION;
FILENAMAE: In NAME STRING;
FORM:W In LIST TYPE DFEPTYLIST;
ATTRIBUTES: In LI17T TYPE;
ACCESS -CONTROL: In LIST_-TYPE :EMPTY -LIST;
LEVEL. In LIST-TYPE : MPTY LIST)

FILE NODE :NODE TYPE.
begin

OPEN(ILE-NODE. FILENAME
(READATRIUTES, READ CONTENTS));

COUIPLE (QUEUE BASE, QUEUE KEY. UEUIERELATION.
FILE NODE. FORM. ATrTRIBUTES. ACCESS-CONTROL. LEVEL);

CLOSE (FILEMODE);

exception
when others =>

CLOSE (FILENODE);
raise;

end COUPLE;

procedure COUPLE (QUEUENAME: in NAMESTING.
FILENAME: In NAME STRING.
FORM7 in LIST-TYPE :- EWPTY LZST;
ATTRISIJTES: In LIST TYPE;

ACCESS -CONTROL in LISTTYPE :z EMPTYLIST.
LEVEL;: in LIST-TYPE :2: EMPTY LIST)

FILE NODE : NODE TYPE.
QUEUE BASE : NODETYPE.

begin
OPEN (QUEUE BASE. BASE PATH (QUEUE NAME).

OPE(FIE-NDE.FIL-MAE.(1=>APPEND RELATIONSHIPS));

(READ ATTRIqvrEs, READ CONTENT)).
COUPLE (QUEUEASE. LAST-KEY (QUEENAME) .

LASTREI.TIONI(QUEUE-NAME).
FILE-NODE. PORN. ATTRIBUTTES. ACCESSCONTROL. LEVEL);

CLOSE (QUEUE BASE);
CLOSE(FILE NODE);

exception
when others =>

CLOSE (QUUEABE)

CLOSE (FILE NODE);
raise;

end COUPLE;

Notes:

Ilead otwrations on a mimic quetie flit whime cou~pled flie ha-q tw~en drleted or ham fewer CivnivrLs(ft
than expected In the mimic qujeue flie (e g.. If POMP of the content.4 or the couleid nlie have been
deleted) will encotinter an end or nlit. Attempts to opena mimic queue nit, whose couipled flic
hs tw'en deleted with MODE other than IN _FILE Pai.e. a USK ERROII extcpton. Attempts

129



PROPOI E[) '.ILS'TD-('AIS

31 JANA AR') 195

ATTRIBUTES defines Initial values for attributes of I he newly created node.

ACCESS_-CONTROL
deflnes the Initial access control Information associated with the created node.

LEVEL defines the clmlflvatlon label for the created node.

Exceptions:

NAMEERROR
is ra.ised If a node already exists for the node Identification given by
QUEUE_ BASE. QUEUE_ KEY and QUEUE_-RELATION or it this node
Identification is Illegal. NAME _ ERROR Is also raised If any node Identifying a
group specified In the ACCESS-_CONTROL parameter is unobtainable or
Inaccessi bie.

USE- ERROR Is raised If the node Identified by FILE_ NODE Is not a file node, does not have a
FILE KIN attribute value or SECONDARY_ STORAGE, or has an
ACCESSMETHOD attribute value of DIRECT or ir the ATTRIBUTES
parameter either has no value for the QUEUTE -KIND attribute or has the value
QUEUE_KIND ==> SOLO. USEERROR Is also raised It the FORM, LEVEL.
ACCESSCONTROL or ATTRIBUTES parameters do not adhere to the required
syntax. USE_-ERROR Is also raised It Interpretation of the ATTRIBU TTES

parameter would result in modification or creation ot any predefined attributes
other than QUEUE KIND, or it QUEUERELATION Is the name of a predefined
relation which cannot be created by the user.

STATUS-ERROR
is raised if QU7EUE_ BASE and FILE_-NODE are not both open node handies.

INTENT- VIOLATION
Is raised It QUEUE _BASE was not opened with an Intent establishing the right to
append relationships or it FILE_-NODE was not opened with an Intent estabiishing
the right to read contents and attributes.

SECURITY_-VIOLATION
Is raised It the operation represents a violation ot mandatory access controls.
SECURITY_ VIOLATION Is raised only It the conditions tar other exceptions are
not present.

Additional Intertaces:

procedure COUPLEq (QEU NAME: in NIAESTRING;
FILE NODE: In NODE TYP;
FORM: In LIST TYPE :EMPTY-LIST;
ATTRIBUTES: in LIST TYPE;
ACCESS CONTROL: In LIST TYPE :EMPTY LIST;
LEVEl.: In LIST-TYPE EMPTY LIST)

is
BASE : NODE-TYPE;

begin
OPEN (BASE. BASE PATH (QUEUE KAME) . (1 =)APPEND RELATIONSHIPS));
COUPLE (BASE, LAST KEY (QUEUE NAME). LAST RELATION (QUEUE ItANE),

FILE NOD6E. FORM. ATrmiavrEs. ACCESS CONTROL, LEVEL);



PROPOSED ML-STD-('AJS

31 JAN1'-Rk 198.5

STATUS ERROR
is raised if TERMINAL in not an open file node.

5.3.5.13. Creating a queue file node

procedure COULE
(QUEUE BASE :in OE TYPE;
QUEUEKEY : In RELATIONSHIP KEY := LATESTKEY;
QUEUERELATION :In RELATION-NAME := DEFAULTRELATION;
FILEMODE :In nODETYPE;
FOR In LIST TYPE := MTY LIST;
ATTRIBUTES In LIST TYPE; -- Intentionally not defaulted
ACCESS-CONTROL :In LIST TYPE EMPTY LIST;
LEVEL in LIST-TYPE : MITYLIST);

Purpose:

This procedure creates a queue file node and its contents and installs the primary relationship to
It. The relation name and relationship key or the primary relationship to the node and the base
node from which It emanates are given by the parameters QUEUERELATION.
QUEUEKEY and QUEUEBASE. A secondary relationship of the predefined relation
COUPLE Is created from the created queue file node to the file node Identified by
FILENODE.

The Initial contents of the queue file is the contents of the file associated with the file node
Identified by FILENODE at the time the queue file is created. The queue file node is created
with the same ACCESSMETHOD attribute value as the node identified by FILE_ NODE.
DIRECT may not be a value of this ACCESSMETHOD attribute. The FILEKIND
attribute of the created queue flue node has the value QUEUE. The QUEUEKIND attribute
of the created queue file node is set by the appropriate value In the ATTRIBUTES parameter.
ATTRIBUTES must Include a list item that is either QUEUE_ TYPE => COPY or
QUEUE_TYPE => MIMIC. COUPLE Is the only interface that can be used to create a
mimic or copy queue.

The ATTRIBUTES parameter defines and provides Initial values for attributes of the node. The
ACCESS _CONTROL parameter specifies initial access control Information to be established for
the created node.

The LEVEL parameter specifies the security level at which the file node is to be created.

Parameters:

QUEUEBASE
Is an open node handle to the node from which the primary relationship to the new
node Is to emanate.

QUEUE_KEY
is the relationship key of the primary relationship to be created.

QUEUE RELATION
Is the relation name of the primary relationship to be created.

FILE NODE Is an open node handle to the file nodc with which the queue is lo be coupled.

FORM Indicates file characteristics,

127



PROPO4P) M L- ;TV-C.4I"

31 JANTAR'I 19

5.3.5.11. Enabling and disabling function key usage

procedure ENABLEFUNCTioN KEYs (TENWINAL :1n FILETYPE,
ENABLE : in DOOLEAX)

Purpose:
This procedure establishes whether data read as the result at pressing a function key on the
physical Input terminal is to appear In the Input terminal fIle as ASCII character sequences or in'.

function key Identification numbers. A value of TRIUE for ENABLE Indicates that the funli*f
keys should appear as numbered values. A value of F'ALSE Indicates that the function keyM
should appear as ASCII character sequences. The function keys are said to have been) enabled if
the value or ENABLE Is TRUE.

Parameters:

TERMINAL Is an open fnle handle on an input terminal file.

ENABLE Indicates how function keys are to appear.

Exceptions:

USE-ERROR Is raised if TERMINAL is not the value or the attribut-e FILE KIND of the node
associated with the nie identified by the parameter TERMINAL. USE _ ERROR is
also raised If the nie Identified by TERMINAL Is of mode OUT _FILE or
APPENDFILE.

STATUSERROR
Is raised If TERMINAL Is not an open fnle h~indie.

Notes:

This procedure has no effect on read operations or the CAI- .TEXT _10 package.

5.3.5.12. Determining function key usage

function FUNCTION KEYs EMABLEN) (TmiMA :in FILE TYPE)
return DOOLEAN;

Purpose:

This function returns TRUE If the function keys are enabled, I.e., they appear In the input
terminal file as numbered values; otherwise It returns FALSE.

Parameters:

TERMINAL is an open fie handle on an Input terminal file.

Exceptions:

USE_ ERROR i. raised If TERMINAL is not the value or the attribute FILE -KIND of the node
associated with the fie identified by the parameter TERMINAL. USE _ERROR Is
also raised If the nipe identified by TERMINAL is or mode OUT FILE or
APPENDFILE.

126



31 II AR - tog

5.3.5.9. Determiningthe prompt string

function OW? PRO)0,T (TEMNAL :ift FILE-TYPE)
return smim6;

Purpose:

This function returns the current prompt string for the Input terminal file Identified by
TERMINAL.

Parameters:

TERMINAL is an open file handle Identifying an Input terminal file.

Exceptions:

USE ERROR is raised If TERMINAL is not the value of the attribute FILE_ KIND or ir
SCROLL or PAGE Is not a value of the attribute TERMINAL KIND of the node

associated with the ile Identified by the parameter TERMINAL.

MODE ERROR
Is raised if the file Identified by TERMINAL is not of mode IN FILE or
INOUTFILE.

STATUSERROR
is raised If TERMINAL is not an open file handle.

5.3.5.10. Determining intercepted characters

function I)TCEFPTECIARACTMIS (TERMIAl. :in FILE- TYPE)
return aItAACTml AmmY;

Purpose:
This function returns the array CHARACTER ARRAY that Indicates the characters that can
never appear in the input terminal file Identified by TERMINAL due to characteristics or the
underlying system and the individual physical terminal. A value of TRUE Indicates that the

character can appear; a value or FALSE Indicates that It cannot appear.

Parameters.:

TERMINAL Is an open fite handle on an input terminal file,

Exceptions:

USE-ERROR Is raised if TERMINAL is not the value or the attribute FILE KIND of the node
associated with the flie identified by the parameter TERMINAL.

MODEERROR
Is raised If the file Identified by TERMINAL is not or mode IN _ILE or
INOUT- FILE.

STATUSERROR
is raised Ii TERMINAL is not an open file handle.

125



31 J'ANI kRN 95

USE_ ERROR Is raised If the nie Identified by FILE has no log file.

STATUSERROR
Is raised ir FILE is not an open rile handle.

5.3.5.7. Determiniing the rile size

function NUMBER -OF_-ELEMENTS (FILE :in FILETYPE)
return NATURAL,

Purpose:

This function returns the number or data elements contained In the rile Identified by FILE. The
package that was used to write the elements determines what. constitute a data element.

Parameters:

FILE is an open rile handle on a secondary storage or queue Mie.

Exceptions:

USICERRIIOR Is raised If the value of the attribute FILE _KIND of the node associated with the
rile identified by IFILE is TERMINAL or MAGNETIC-TAPE.

STATU'SERROR
Is raised If FILE Is not an open file handle.

5.3.5.8. Settingi the prompt string

procedure SETPROMPT (TERMINAL : in FILE-TYPE;
PROMPT :in rING):

P u rpose:
This procedure sets the prompt string for the output terminal file associated with the input
terminal rile Identified by TERCMINAL. All future requests for a line of input from the Input
terminal file Identified by TERMINAL will first output the prompt string to the associated
output terminal file.

Parameters:

TERMINAL Is an open file handle Identifying an input terminal file.

PROMPT Is the new value of the prompt string.

Exceptions:

USE _ERROR Is raised If TERMINAL Is not the value .%f the attribute FILE '-KIND or If
SCROLL or PAGE in not a value of the attni murt TERMINAL _KIND of the node
associated with the file Identfined by the paratnleler TERMINAL.

MODEERROR
Is raised If the file Identfined by TERMINAL Is not of mode IN FIIE or
INOUTFILE.

STATUS _EHRO101
Is raise(] If TERIMINAl, Is not an ope-n fie handle.

124



3! JA\% ,RH 9 8Gi

5.3.5.4. Removing a log file

procedure ZAR LOG(FILE In FILE)TE);

Purpose:

This procedure removes the association established between the file IWentlied by FILE and Its
log file.

Parameters:

FILE Is an open file handle on a file that has a log file.

Exceptions:

STATUSERROR
Is raised ir FILE Is not an open file handle.

Notes:
ir FILE Is an open file handle and there Is no log file, this procedure has no effect.

5.3.5.5. Determining whether logging is specified

function L=GzGIN (FILE :in FILE TYPE)
return BoOLEAM:

Purpose:

This function returns TRUE if the file Identified by FILE has a log file associated with it:
otherwise, It returns FALSE.

Parameters:

FILE Is an open file handle.

Exceptions:

STATUSERROR
Is raised If FILE Is not an open file handle.

5.3.5.6. Determining the log file

function GET LoG (FILE In FILE-TYPE)
return FILE TYPE;

Purpose:

This function returns an open file handle on the log file currently associated with the file
Identified by FILE.

Parameters:

FILE Is an open file handle.

Exceptions:

123



PR()VO-F.D) %111,STD-( Akll

31 JAM! +kLR) 109,

5.3.5.2. Synchronizing program files with system files

procedure SMCHROMIZE(FILE :In FILE-TYPE);

Purpose:

This procedure forces all data that has been written to the Internal file Identified by FILE to be
transmitted to the external file with which It Is associated.

Parameters:

FILE Is an open file handle on the Internal file to be synchronized.

Exceptions:

USEERROR Is raised if the file Identified by FILE is of mode IN_ FILE.

STATUSERROR
Is raised if FILE is not an open fle handle.

5.3.5.3. Establishing a log file

procedure SETLOG(FILE :in FILETYPE;
LOGFILE :in FILE TYPE);

Purpose:

This procedure associates a log file identified by LOG FILE with the file identified by FILE.
All elements written to the Internal file Identified by FILE are also written to the file Identified
by LOG FILE.

Parameters:

FILE is an open fie handle on the file which is to have a log file.

LOG FILE is an open file handle on the file to which the log should be written.

Exceptions:

MODEERROR
Is raised if the mode or either of the fies Identified by FILE or LOG FILE is
IN-FILE.

USE ERROR Is raised If the nodes associated with the files Identified by FILE and LOG _ FILE
do not have the same values for the attribute ACCESS METHOD or If the flies do
not have compatible elements (Implementation-defined).

STATUSERROR
Is raised If FILE and LOGFILE are not both open file handles.

1'22

-. - .t.--



pHOPU",L1 MII..'TI-( 4J

31 J.41% NH)~ jIw

5.3.5.1. Obtaining an open node handle from a rile handle

procedure PEY FiLE_ DE(FiL: In FILE_TYPE,

NODE: in Out NODE TYPE;
INTENT: In INTEwTION;
TIKELIMIT: i0 DU1ATION:=NO DELAY);

Purpose:

This procedure returns an open node handle for the node associated with the rile Identified by

FILE.

Parameters:

FILE Is an open file handle.

NODE is a node handle, initially closed, to be opened.

INTENT is the Intent or subsequent operations on the node; the actual parameter takes the
form of an array aggregate.

TIME LIMIT specifies a time limit for the delay on waiting for the unlocking of a node in

accordance with the desired INTENT.

Exceptions:

NAME - ERROR

Is raised if the node to which a handle Is to be opened Is Inac.essible or if it is
unobtainable and the given INTENT includes any Intent other than EXISTIENCE.

USE ERROR Is raised if the specified INTENT is an empty array.

STATUSERROR

Is raised If FILE Is not an open file handle or if NODE is an open node handle.

LOCKERROR

is raised If the OPEN FILE_ NODE operation is delayed beyond the specified

time limit due to the existence of locks in conflict with the specified intent.

ACCESS VIOLATION
Is raised if the current process' discretionary access control rights are insufficient to
obtain access to the node consistent with the specified INTENT.

ACCESSVIOLATION I raised only If the conditions for NAME_ERROR are

not present.

SECURITYVIOLATION
is raised If the operation represents a violation of mandatory access controls.

Sf'CLYRITY_ VIOLATION Is raised only If the conditions for other exceptions are
niot present.

t2!



PROPO'SED MiI,.TD- 1J-

31 JA tM N 1914!,

USEERROR is raised if TERMINAL is not the value of the predefnned attribute FILEKIND.
SCROLL is not a value or the predeflned attribute TERMINALKIND of the fil,
node associated with the file Identified by the parameter TERMINAL. or there are
fewer than COUNT tab stops of the designated kind after the active position.

MODEERROR
is raised If the fIle identified by TERMINAl, Is or mode IN FILE.

STATUSERROR
Is raised if TERMINAL is not an open file handle.

DEVICEERROR
Is raised If an input or output operation cannot be completed because of a
malfunction of the underlying system.

Additional Interface:

procedure TAB(IND: in TAB -ENUMERATION := RMORXZONTAIL;
COUNT: in POSITIVE := 1)

is
begin

TAB(CURRENT OUTPUT. KIND. COUNT);
end T9.

5.3.6.8. Sounding a terminal bell

procedure BEL(TERMINAL: in FILE-TYPE);

Purpose:

This procedure sounds the bell (beeper) on the terminal represented by the output terminal file

Identified by TI"RMINAI.

Parameters:

TERMINAL Is an open file handh' on an output terminal file.

Exceptions:

USE_ ERROR is raised if TERMINAL is not the value " the predefined attribute FILE_ KIND or

SCROLL is not a value or the predefinc attribute TERMINAL_ KIND of the file

node associated with the file Identified by the parameter TERMINAL.

MODEERROR

Is raised if the file identifIed by TERMINAL, Is of mode IN FILE.

STATUSERROR
is raised If TERMINAl, Is not an open file handle.

DEVICEERROR
%% raised It an Input or output operation cannot be completed because of a
malfunction of the underlying system.

Additional Interface:

135



PROPOQED IIL-STD-CA S

31 JANVARY I,5

procedure Ntu
is
begin

BEI-L (CtURUET wzwU);
end -r.u.;

5.3.6.0. Writing to the terminal

procedure PrturCT"RmImAL: In rILE TV?!;
ITEM: in CHARAC'TR):

Purpose:

This procedure writes a single character to the output terminai nme Identified by TERMINAL
and advances the active positlon by one column.

Parameter:

TERMINAL is an open flie handle on an output terminal file.

ITEM is the character to be written.

Exceptions:

USEERROR Is raised If TERMINAL is not the value or the predefined attribute FILE KIND or
SCROLL is not a value or the predefined attribute TERMINAL_KIND or the file
node associated with the file identified by the parameter TERMINAL.

MODEERROR

is raised If the file Identified by TERMINAL is of mode IN FILE.

STATUS_ ERROR
Is raised if TERMINAL Is not an open file handle.

DEVICE- ERROR
Is raised ir an Input or output operation cannot be completed because or a
malfunction or the underlying system.

Additional Interfaces:

procedure pmra(ITEM: in owuCItU)
is
begin

PUr (CR m_0uPT. ITEM);
end PTr.

procedure Put(TmhmAL: In PILE TYPE;

rm: in STiIXG)

begin
for zxME in ITEM-FIR T .. ITSM LAST loop

PU"(TERIIIML. ITEM(ND0O)
end loop;

end ruTr;

procedure PUriCTEm: In sInoG)

136



PROPO'-I;D 0,llM.TD-( A-

.41 JAM AP) 199w

begin
PrJ (CLRRE WrTPUTrr. ITEM) :

end PUT;

Notes:

After a character is written In the rightmost position of a row, the active poslthn is the first
position of the next row.

6.3.6.10. Enabling echo on a terminal

procedure SETECHO(TEMIMAL: In FILE -_11P
TO: in OOLEAN :T TRUE);

Purpose:
This procedure establishes whether characters which appear In the input terminal rie Identified
by TERMINAL are echoed to Its asociated output terminal file. When TO is TRUE. each
character is echoed to the output terminal file. When TO Is FALSE, each character which
appears In the Input terminal file is not echoed to Its associated output terminal file.

Parameters:

TERMINAL is an open file handle on an Input terminal file.

TO Indicates whether or not to echo input characters.

Exceptions:

USEERROR Is raised if TERMINAL Is not the value of the predefined attribute FILE-KIND or
SCROLL Is not a vatue of the predefined attribute TERMINAL _KIND or the file
node associated with the file Identified by the parameter TERMINAL.

MODE ERROR

Is raised if the file Identified by TERMINAL is of mode OUTFILE or

APPEIND_ FILE.

STATUSERROR
Is raised if TERMINAL is not an open rile handle.

DEVICEERROR
Is raised If an Input or output operation cannot be completed because or a
malfunction or the underlying system.

Additional Interface:

procedure smET cHo0(T: In DOOLAN := TMM)

Is
begin

BETCH0 (CURRETrIMPiJ ". TO);
end BE 0ECHO;

137



PROPOSED N1IL-STD,-CAIS

31 JANUARY 195

5.3.8.11. Querying echo on a terminal

function BO10(TERNXNAL: In FILE-TYPE)
return 300LEa;

Purpose:

This function returns TRUE If echo Is enabled; otherwise It returns FALSE.

Parameters:

TERMINAL Is an open rile handle on an Input terminal rile.

Exceptions:

USE-ERROR is raised If TERMINAL Is not the value of the predefined attribute FILE- KIND or
SCROLL is not a value of the predlefned attribute TERMINAL_-KIND of the file
node associated with the file Identified by the parameter TERMINAL.

MODEERROR
Is raised If the file Identified by TERMINAL is of mode OUT _FILEF or
APPENDFILE.

STATUSERROR
is raised if TERMINAL Is not an open rile handle.

DEVICEERROR
is raised If an Input or output operation cannot be completed because or a
malfunction or the underlying system.

Additional Interface:
function £010 return DooumA
in
begin

return ECH0 (CuRREr INPU);
end Em1;

5.3.8.12. Determiningt the number of function key.

function NAXflM-FtJWcION KEY (TDRMIN : in FILE-TYPE)
return NATURAL;

Purpose:

This function returns tue maximum function key Identification number that can be returned by
a GET operation on the Input terminal file identified by TERMINAL.

Parameters:

TERMINAL Is an open rile handle on an Input terminal rile.

Exceptions:

USE_-ERROR Is raised If TERMINAL Is not the value of the predefined atiribute FILE_-KIND or

133



31 JAJ .ARR IGNS

SCROLL Is not a value or the predefined attribute TERMINAL_ KiN) or the rile
node associated with the rile Identified by the parameter TERMINAL.

MODEERROR
Is raised If the rile Identified by TERMINAL Is of mode (UT _ FILE or
APPENDFILE.

STATUSERROR
is raised It TERMINAL Is not an open rile handle.

DEVICEERROR
Is raised It an Input or output oiperation cannot be completed because of a
malfunction or the underlying syst-eiri.

Additional Interfawce:
function NAmammN ?WMTION m return K(A -,RAL

in
begin

return mAxirtm FuJNC~t Ny (CURRENT- 'YpUT);
end miaXmuFuNscrioli-xv;

5.3.8.13. Readitia a character from a terminal

procedure GET(TotmiMAL: in FILE -TYPE;
rTEWd out CHARAC~t~;
KEYS: oUt FUNCTION KEY DESCRIPTOR);

Purpose:

This procedure reads either a single character InLo ITEM or a single fnntion ke'y identification
number into KEYS from the Input terminal rile identified by TERMIN.AL.

Parameters:

TERMINAL Is an open flle handle on an Input terminal rile.

ITEM Is the character that was read.

KEYS Is the description of the fuinction key Identification number that was read.

Exceptions:

USE_ ERROR Is raised if TERMINAL Is not the value of the predefined attribute FILE_- KIND or
SCROLL to not a value of the predefined at~trib~ute TERMINAL_ KIND of the file
node associated with the rile Identified by the parameter TERMINAL.

MODE-ERROR
Is raised If the rile Identified by TERMINAL is or' mode OUTFILE or
APPENDFILE.

STATUSERROR
Is raised If TE1I;%IINA. lit not an open fi'le handle.

1 39



PROPOSED hil-STD-C.AIS

31 JANVAR) 1"N~

DE'VICEERROR
Is raised If an Input or output operation cannot be completed because or a
malfunction of the underlying system.

Additional Interface:
procedure GET (1T: out CIARACTER

KEYS: out FtnoCTION K4EY DrSmIPTm)
is
begin

GET(CURRET INUT. IrM. KEYS);
end GET;

Notes:

This procedure will only return function key Identification numb~ers in KEYS if function keys
have been enabled (see Section 5.3.5.11). Otherwise the characters In the ASCaI character
sequence representing the function key will appear one at a time In ITEM.

6.3.8.14. Readinx all available chara~cters from a terminal

procedure GET TEmiNAL: In FILE TYPE;
ITEM: out STrING
LAST: out NATURAL.;
KEY: out FUNCTON KEY DESCRIPIR)

Purpose:

This procedure succes.Lsvely reads characters and function key Identification numbers Into ITEM
and KEYS respectively, until either all positions or ITEM or KEYS are filled or there are no
more characters available In the Input terminal file. Upon completion. LAST contains the Index
of the last position In ITEM to contain a character that has been read.

Parameters:

TERMINAL In~ an open file handle on an Input terminal file.

ITEM Is the string of characters that were read.

LAST Is the position of the last character read In ITEM.

KEYS Is a description of the function key Identification numbers that were read.

Exceptions:

USE- ERROR Is raised If TERMINAL Is not the value of the predefined attribute FILE_-KIND) or
SCROLL Is not a value of the predeflned attribute TERMINAL_-KIND or the file
node asqqociated with the file Identified by the parameter TERMINAL.

MODEERROR
Is raised if the file identified by TERMINAL. Is of mode OIT _ FILE or
APPENI) FILE.

STATUSERROR
Is raised If TERMINAL. Is not an open file handle.

140



PROPO",ED MII, TD.-- ALI,

31 JAMI AH) IA9

DEVICE ERROR
is raised If an input or output operation cannot be completed because or a
malfunction or the underlying system.

Additional Interface:

procedure GETrr(M: out sm1mii;
LAST: out NATURAL;
KEYS: out FUCION KEY DESCRIPTOR)

is
begin

GET(CURRENTINPUT. ITEM. LAST. KEYS);
end GET;

Notes:

This procedure will only return function key Identification numbers in KEYS if function keys
have been enabled (see Section 5.3.5.11). Otherwise the characters In the ASCII character
sequence representing the function key will appear in ITEM. If there are no elements available
ror reading from the input terminal flle, then LAST has a value one less than ITEM'FIRST and
FUNCTIONKEYCOUNT(KEYS) (see Section 5.3.6.15) is equal to zero.

5.3.6.15. Determining the number of function keys that were read

function FUNCTIox KEY cOUNTr(KEYS; in FUNCTIONKEYDESCRIP0M)
return iATURAL;

Purpose:

This function returns the number of function keys described in KEYS.

Parameters:

KEYS is the function key descriptor being queried.

Exceptions:

None

5.3.6.16. Determining function key usage

procedure FuNcriom-(KEYs: In ruNCTmO KEY_ DwcitirOR;
INDEX: in POSITIVE;
KEY IDENTIFIER: out POSITIVE;
POSITIO: out NATURAL);

Purpose:

This procedure returns the identification number of a function key and the position In the string
(read at the same time as the function keys) of the character following the function key.

Parameters:

KEYS Is the description of the function key Identification numbers that were read.

INDEX Is the Index In KEYS of the function key to'be queried.

Itl



PROPO)sED N1IL-,Tr-(,AS

31 JANVARN 198.5

KEY_ IDENTIFIERIs the Identification number or a function key.

POSITION is the position or the character read after the function key.

Exceptions:

CONSTRAINT_ ERROR
is raised If INDEX Is greater than FUNCTION_-KEY_ COUNT(KEYS).

6.3.6.17. Determininiz the name of a functior key

procedure nnwICToxKEY NAm TENMINAL: in FILE TYPE;
KEY IDENrIFIER: in POSITIVE;

KEY-NME: out InMING;
LAST: out POSITIVE);

Purpose:

This function returns (in KEYNAME) the s- ing identification of the fit, lion key sequence

designated by KEY_ IDENTIFIER. It also returns the index of the la.- character of the

function key name In LAST.

Parameters:

TERMINAL Is an open file handle on an input terminal rile.

KEY-IDENTIFIER
is the identification number of a function key.

KEY - NAME Is the name of the key designated by KEY- IDENTIFIER.

LAST Is the position In KEY - NAME of the last character of the function key name.

Exceptions:

USE_-ERROR Is raised if TERMINAL Is not the value of the predefined attribute FILE_-KIND or
SCROLL Is not a value of the predefined attribute TERMINAL KIND of the (lie
node associated with the file identified by the parameter TERMINAL.

MODEERROR
Is raised If the rile identified by TERMINAL Is of mode OU'T _FIlE or
APPEND -FILE.

STATUSERROR
Is raised if TERMINAL Is not an open mie handle.

DFX ICE -ERROR

Is raised If an Input or output operation cannot be completed because of a
malfunction of the underlying stystem.

CONSTRAINT- ERROR
Is raised if the value of I(EY IDENTII'IER Is greater than

142



31 JAM ARI lsr7,

MAXIMUM _ FUNCTION- KEY(TERMJNAL) or the string identification or the
function key sequence is longer than the string KEY 'NAME.

Additional Interface:

procedure FuNcriI KEY NAxmE
(KE-IENTFRin. In POSITIVE;

KEY NAmE: out SmhiN;
LAsT: out POSITIVE)

is
begin

FUNCTON KEY-NAME (CURRFwrT INPt1T.
KrZl IDENTIFrEki. KEY NAME. LAST).

end FuNCTION Ky NmE;

5.3.0.18. Advancing the active position to the next line

procedure NEV LINE(TEMIMA: in FILE-YPE;
CamN: in POSITIVE := 1);

Purpose:

This procedure advances the active position In the output terminal file to column one, COUNT
lines after the active position.

Parameters:

TERMINAL Is an open file handle on an output terminal fliv.

COUNT Is the number of lines to advance.

Exceptions:

USE _ RROR Is raised It TERMINAL Is not the value of the predefined attribute FILE _ KIND) or
SCROLL is not a value of the predefined attribute TERMINAL _KIND or the file
node associated with themfle Identified by the parameter TERMINAL.

MODEERROR

is raised If the file Identified by TERMINAL Is of mode IN-FILE.

STATUSERROR
Is raised If TERMINAL Is not an open file handle.

DEVICEERROR
Is raised If an Input or output operation cannot be completed because of a
malfunction of the underlying system.

Additional Interface:

procedure NEW LINEW(CMW: n POSITIVE :u 1)
is
begin

NEV LINE (CU.RAENT-OUTPIJT. COUNT).
end NEW LINE;

143



PROPOSED kllj TD-C.AJS

31 JVNU.ARY 19.5

5.3.8.19. Advancing the active position to the next page

procedlure W ,PAE(TUIimAL: in FILE _E);

Purpose:

This procedure advances the active position In the output terminal file to the first column of the

first line or a new page.

Parameters:

TERMINAL is an open file handle on an output terminal file.

Exceptions:

USE ERROR is raised If TERMINAL is not the value or the predeflned attribute FILEKIND or

SCROLL is not a value or the predefined attribute TERMINALKIND of the file
node associated with the file Identified by the parameter TERMINAL.

MODEERROR

is raised iT the file identified by TERMINAL is of mode INFILE.

STATUS ERROR
is raised if TERMINAL Is not an open file handle.

DEVICEERROR
is raised if an Input or output operation cannot be completed because or a

malfunction of the underlying system.

Additional Interface:

procedure NEWPAE

begin
NPAGE (CURRETOUTPUT);

end EPAGE:

5.3.7. Package PAGE-TERMINAL

This package provides the functionality or a page terminal. A page terminal consists of two devices:
an Input device (keyboard) and an associated output device (display). A page termind may be
accessed either as a single file of mode INOUT FILE or as two files: one of mode INFILE (the

keyboard) and the other of mode OUTFILE (the display). As keys are pressed on the page terminal
keyboard, the transmitted characters are made available for reading by the
CAIS.PAGE TERMINAL package. As characters are written to the page terminal file, they are
displayed on the output device.

The display or a page terminal has positions in which printahle ASCII characters may Ix- graphically
displayed. The positions arc arranged Into horizontal rows and vertical columns. Each itosition Is
Idcntifiable by the combination of a row number and a column number. A display has a flx(u number

of rows and columns. The rows and columns of a display are Identified by positive numl,e.. The
rows are Incrementally Indexed starting with one at the top of the display. The colimns are
Incrementally Indexed starting with one at the left side of the display.

144



31 J--%t %RN

The active position on the display of a page terminal is the position at wl~ich the next operation will
be performed. The active position is said to advance if (1) the row number or the new position is
greater than the row number of the old poeltion or (2) the row number or the new position Is the same
as the row number of the old position and the new position has a greater column number. Similarly, a
position is said to precede the active position If (1) the row number of the position is less than the row
number of the active position or (2) the row number of the position is the same as the row number of
the active position and the column number of the position is smaller than the column number of the
active position.

5.3.7.1. Types, subtypes and constants

subtype FILETYPE is CAIS.IODEINITIOS.FIE_TYPE;

subtype FUNCTION KEY DESCRIPTOR is
CAiS. I0 DEFIITIOislFuNCTION EY DESCRIPTOR;

subtype POSTON TYPE is cAiS. 10 DiNiiTIoNS.POSITiO NTYPE;

subtype TABENUMERATION is CAIS.Ia.DEFINITIONS.TAB ENUMERATION;

type SELECT ENUMERATION is
(FROM ACTIVE POSITION _TO END.

FROM STARTTOACTIVE POSITION.
ALL_POSITIONS);

type GRAPHIC RENDITION ENUMERATION is
(PRIMARY REIDITION,
BOLD.
FAINT.
UNDERSCORE.
SLOW BLINK.

RAID BLINC,
REVERSEIMAGE);

type GRAPHICRENDITIONARRAY i array (GRAPHICRENDITIONiENUMEtATION)
Of BOOLEAN;

DEFAULT GRAPHIC RENDITION : constant GRAPHIC RENDITION ARRAY
:= (PRIMARY-RENDITION => TRUE, BOLD..REVEkSE_IMAGE 9> FALSE);

FILETYPE describes the type for file bandies. FUNCTIONKEYDESCRIPTOR is used to
obtain Information about function keys read from a terminal. POSITION_ TYPE describes the type
of a position on a terminal. TABENUMERATION Is used to specify the kind of tab stop to be set.
SELECT ENUMERATION is used in ERASE_ IN DISPLAY and ERASEINLINE to
determine the portion of the display or line to be erased.
GRAPHIC _RENDITION -ENUMERATION, GRAPHIC _ RENDITION _ ARRAY, and
DEFAULT_ GRAPHIC_ RENDITION are used to determine display characteristics of printable
characters.

6.3.7.2. Setting the active position

procedure SETPOSrIION(TERMI AL In FILETYPE;
POSITION : in POSITIONTYPE);

Purpose:
This procedure advances the active position to the specified POSITION on the output terminal
rlle Identified by TERMINAL.

I4,5



PROPOSED M1L-STD-.CAS

31 J.Nt',AR1 1985

Parameters:

TERMINAL Is an open file handle on an output terminal file.

POSITION is the new active position in the output terminal file.

Exceptions:

USE ERROR is raised If TERMINAL is not the value of the predefined attribute FILE KIND
or PAGE is not a value or the predefined attribute TERMINALKIND or the file
node associated with the file Identified by the parameter TERMINAL.

MODEERROR
is raised If the file Identified by TERMINAL is o mode IN-FILE.

STATUSERROR
Is raised it TERMINAL Is not an open file handle.

LAYOUTERROR
is raised If the position does not exist on the terminal.

DEVICEERROR
is raised If an Input or output operation cannot be completed because of a

malfunction o the underlying system.

Additional Interface:

procedure SET-POSITION(POSITION : In POS:TIO%_TYPE)
Isin
begin

SET POSITION(CURRENTOUTPUT, POSITION);
end SETPOSITION;

5.3.7.3. Determining the active position

function GET POSITION (TERMINAL : In FILE TYPE)
return POSITION-TYPE;

Purpose

This function returns the active position ot the outpwt terminal file Identified by TERMINAL.

Parameters:

TERMINAL Is an open file handle on an output terminal file.

Exceptions:

USEERROR Is raised If TERMINAL Is not the value o the predefined attribute UILE KIND
or PAGE Is not a value of the predefined attribute TERMINAL_ KIND ot the file
node associated with the file identified by !bie parameter TERMINAL.

MODE ERROR
Is raised it the file identified by TERMINAL Is of mode IN FILE.

146



PROPO)FFD Mlll Tr.- (Ail

STATUS _ERROR

Is raised If TERMINAL is not an open flie handle.

DEVICEERROR
Is raised if an Input or output operation cannot be completed because or a
malfunction or the underlying system.

Additional Interface:

function GET -POSITiON return PosrToNTYPE
is
begin

return GET POSITION (CURRENT-OUTPUrT);
end GET POSITION;

5.3.7.4. Determining~ the size of the terminaL

function TERMINAL -SIZE (TERMINAL -. In FILE TYPE)
return POSITION TYPE;

Purpose:

This function returns the maximum row and maximum column or the output terminal flie
Identified by TERMINAL.

Parameters:

TERMINAL is an open file handle on a terminal flie.

Exceptions:

UJSE_ ERROR Is raised It TERMINAL is not the value of the predefined attribute FILE -KIND
or PAGE Is not a value or the predefined attribute TERMINAL _KIND or the file
node associated with the file Identified by the parameter TERMINAL.

MODEERROR
Is raised if the fie Identified by TERMINAL is or mode IN _FILE.

STATUSERROR
Is raised If TERMINAL Is not sin open file handle.

DEVICEERROR
Is raised If an Input or output operation cannot be completed berause or a
mnalfunctionx of the underlying system.

Additional Interface:

function TERmiNALsizE
return POSITION -VPE

In
begin

return TERNMA S I ZE (CURRENT OavrPTr);
end TERNMl.SIZE;

147



PROPO-ED \lL.- T[-( .I1

31 J'kkI 1995a

5.3.7.5. Setting a tab stop

procedure SET TAB(TERmixAL : In FILE TYPE;
KIND In TAB ENUKF3ATION := HORIZONTAL);

Purpose:

This procedure establishes a horizontal tab stop at the column of the active position If KIND is
HORIZONTAL. or a vertical tab stop at the row of the active position if KIND is VERTICAL.

Parameters:

TERMINAL is an open file handle on a terminal file.

KIND Is the kind (horizontal or vertica) of tab to be set.

Exceptions:

USE ERROR Is raised If TERMINAL Is not the value of the predenned attribute FILE KIND
or PAGE is not a value of the predeflned attribute TERMINAL _ KIND of the file
node associated with the ile Identified by the parameter TERMINAL.

MODEERROR

is raised If the lue identified by TERMINAL is or mode IN -FILE.

STATUSERROR
is raised If the file identified by TERMINAL Is not an open fle handle.

DENICEERROR
is raised If an Input or output operation cannot be completed because of a

malfunction or the underlying system.

Additional Interface:

procedure SET TAB(KIND : in TABENUIRTION := HORIZONTAL)

begin
MET TAB(CURENT OUTPI.Y KIND);

end sET-TAB;

5.3.7.6. Clearing a tab stop

procedure cLER. TAB(ToMINAL : In FILE TYPE;
KIND : In TAB ENUMERATION := HORIZONTAL);

Purpose:

This procedure removes a horizontal tab stop from the column or the active position If KINI) is

HORIZONTAL or a VERTICAL tab stop from the row of the active position If KIND Is

VERTICAL.

Parameters:

TERMINAL Is an open file handle on a terminal fle.

148



PR()PO-) I: %11t,1zTr-( *10s

31 JAN, N4) 1987,

MODEERROR

Is raised ii the rile Identified by TERMINAL is or mode INFILE.

STATUSERROR

Is raised If TERMINAL is not an open file handle.

DENW1CEERROR
is raised If an Input or output operation cannot be completed because of a

malfunction of the underlying system.

Additional Interface:

procedure BASE_ INLIM E(sezc'IoN: In sELEcT_EMMErATiom)
in

begin
ERASE INLIKE (CURRENTCTPUT, SELECTIO);

end ERASE INLINE;

5.3.7.23. Inserting space characters in a line

procedure INSERT SPACE (TERMINAL: in FILE TTPE;
CtUNw: in POSITIVE := 1);

Purpose:

This procedure Inserts COUNT space characters Into the active line at the active position. The
character at the active position and adjacent characters are shifted to the right. The COUNT
rightmost characters on the line are lost. The active position Is not changed.

Parameters:

TERMINAL Is an open file handle on an output terminal file.

COUNT Is the number of space characters to be ine-ted.

Exceptions:

USE ERROR Is raised If TERMINAL Is not the value of the predeflned attribute FIi.E KIND
or PAGE Is not a value of the predeflned attribute TERMINAL_ KIND of the file

node associated with the file Identified by the parameter TERMINAL, or ir the
value of COUNT is greater than the number of columns Including and following the

active position.

MODEERROR

is raised If the file Identified by TERMINAL Is of mode INFILE.

STATUSERROR
Is raised If TERMINAL is not an open file handle.

DEVICE ERROR
Is raised If an Input or output operation cannot be completed because of a
malfunction of the underlying system.

162



31 JANI'4R' 1985

TERMINAL. is an open fle handle on an output terminal Mie.

SELECTION is the portion or the display to be erased.

Exceptions:

USEERRO11 Is raised If TERMINAL Is not the value of the predefined attribute FILE _KIND

or PAGE Is not a value or the predefined attribute TERMINAL_- KIND or the fie
node associated with the nie Identified by the parameter TERMINAL.

MODEERROR
is raised If the file Identified by TERMINAL is or mode IN_ FI'LE.

STATUSERROR
Is raised ir TERMINAL is not uan open file handle.

DENICEERROR
Is raised If an Input or output operation cannot be completed because or a
malfunction or the underlying system.

Add~tional Interface:

procedure ERtASEIN OISPLAY(SELEycrioN : in SELEcT ENuxmEATION)
is

begin
ERASEINDISPLAY (CURRMT UTPUT, SEL ECTION):

end ENASf ri DISPLAY;

5.3.7.22. Erasing characters in a line

procedure ERASEIN-LINE (TERMINAL: int FILE-TYPE;
SELECTON: in SELEcTENUMERATION);

Purpose:

This procedure erases the characters In the active line as determii ed by t he active position and
the liven SELECTION (including the active position). After era.-ire er:Lqed posit ions have space
characters. The active position Is not changed.

Parameters:

TERMINAL Is an open rile handle on an output terminal file.

SELECTION Io the portion or the line to be erased.

Exceptions:

I'SF ERROR Is raised If TERMINAL Is not the value or the predefined attribute FILE KIND
or PACE is not a value of the predefined attribute TERIMINAL_ KIND) or the rile
node associlated with the fie Identified by the parameter TERMINAL. or ir the
value or COUNT Is greater thain the number or columns Including and following the
active position.

161



PROPOSED MI.STD-CAIS

31 JA.NtLAR) 198S

6.3.7.20. Ertwing characters in a line

procedure ERASECHARACTER(TERMIxAL: in FILETYE;
COUNT: in POSITIE := 1):

Purpose:

This procedure replaces COUNT characters on the active line with space characters starting at
the active position and advancing toward the end position. The active posilIon is not changed.

Parameters:

TERMINAL Is an open file handle on an output terminal file.

COUNT is the number of characters to be erased

Exceptions:

USE ERROR Is raised If TERMINAL is not the value of the predeflned attribute FILE _ KIND
or PAGE is not a value of the predeflned attribute TERMINAL KIND of the rile

node associated with the file Identified by the parameter TERMINAL. or If the
value of COUNT Is greater than the number of positions In the active line including
and after the active position.

MODEERROR
is rased If the file identified by TERMINAL is of mode INFILE.

STATUSERROR
Is raised if the rile Identified by TERMINAL Is not an open file handle.

DEVICEERROR
Is raised If an input or output operation cannot be completed because of a
malfunction of the underlying system.

Additional Interaces:

procedure ERASE- cARACTER (cm : in POSTIWV : 1)
is
begin

ERASE 0RACR (CURRENTOUTPU1. CMlrr);
end ERASE CHARACTER;

5.3.7.21. Erasing characters in a display

procedure ERASEINIDISPLAY(TERMINAL: In FILE TYPE;
SELECTION: In U1L.CTW&WERATION);

Purpose:

This procedure erases the characters In the display as determined by the active position and the
given SELECTION (including the active position). After erasure erased positions have space
characters. The active position is not changed.

Parameters:

160



PROPO"-D \?II,'TD-( \1-

31 Jx\If AkRN tow,

Additional interface:

procedure DLTEOCHAAeT {COUWT: in POSTIVE :=)

begin
DELETE CARACTER (CURAENT_0TPUT, COUT);

end DELETEOIAACTf;

5.3.7.19. Deleting lines

procedure DELETE LINE(TfEMIMAL: In FILE TYP ;
CouNT: in POSITI:=1):

Purpose:

This procedure deletes COUNT lines starting at the active position and advancing toward the
end position. Adjacent lines are shifted from the bottom toward the active position. Open space
at the bottom of the display is filled with erased lines. The active position is not changed.

Parameters:

TERMINAL is an open file handle on an output terminal file.

COUNT Is the number of lines to be deleted.

Exceptions:

USEERROR Is raised If TERMINAL Is not the value of the predeflned attribute FILEKIND
or PAGE is not a value of the predeflned attribute TERMINAL KIND of the file
node associated with the file Identified by the parameter TERMINAL, or If the

value of COUNT Is greater than the number of rows including and following the
active position.

MODEERROR
is raised if the file Identified by TERMINAL Is of mode INFILE.

STATUSERROR
Is raised If TERMINAL is not an open file handle.

DEVICE ERROR
is raised if an Input or output operation cannot be completed because of a
mslfunction of the underlying system.

Additional Interface:

procedure DELETELXNE(COuwr: In POSITIVE : 1)

bin
DELETE_ LIE (CURRENT Wr0'JT, Cort);

end DELETE LINE;

I1.9



PROPOSED MIL-QTD-CAIS
3t JA*,L.%RN tesS

DE'VICEERROR
Is raised If -an Input or output operation cannot be completed btxwausw or a
malfunction of the underlying system.

CONSTRAINT_-ERROR
Is raised If the value of KEYID11ENTIFIER to greater than
MAXP4UM_ FUNCTION_ KEY(TERMINAL) or the string Identification or the
function key sequence Is longer that the string KEY _NAME.

Additional Interface:

procedure NwTIONKEYNaE (CEY IDENTiFIER : inl POSITIVE;
KEY KANE out STING;
LAST out POSITIVE;)

Is
begin

FUNcTION KEY-NAME (CUREN INPUT.
XXY IDENTIFIER. KEY NAM. LAST);

end FuNCTIONKEY NAME;

6.3.7.18. Deletinst characters

procedure DELETE OAMR(TERMINAL: In FILE Trm;
COUNT: in POSITIVE := 1);

Purpose:

This procedure deletes COUNT characters on the active line starting at the active position and
advancing toward tbe end position. Adjacent characters to the right or the active position are
shifted left. Open space on the right is filled with space characters. The active position is not
changed.

Parameters:

TERMINAL Is an open file handle on an output terminal file.

COUNT Is the number or characters to be deleted.

Exceptions:

USEERROR Is raised If TERMINAL Is not the value of the predefined attribute FILE_- KIND
or PAGE Is not a value or the predefined attribute TERMINALKIND or the file
node associated with the Mie Identified by the parameter TERMINAL, or if the
value of COUNT Is greater than the number or positions In the active line Including
and following the active position.

MODE_ERROR
Is raised If TERMINAL is or mode INFILE.

STATUSERROR
In raised If the fie identified by TERMINAL Is not an openfie handle.

DEVICEERROR
Is raised If an Input or output operation cannot be completed because of a
malfunction or the underlying system.



PROPOS ED %IL-STD-( 4.1-

31 JA.N1 AR) 198-.

Parameters:

KEYS is the description of the function key numbers that were read.

INDEX is the Index in KEYS or the function key to be queried.

KEY IDENTIFIER
is the Identification number of a runction key.

POSITION Is the position of the character read after the function key.

Exceptions:

CONSTRAINT ERROR
Is raised If INDEX is greater than FUNCTIONKEYCOUNT(KEYS).

5.3.7.17. Determining the name of a function key

procedure FUNCTIOK Num(TmxxAL : In VIL. _TE;
M IDEIFIER : in POSITIVE;

T NAM : out sMING;
LAST : out POSITIvE);

Purpose:

This function returns (In KEYNAME) the string Identification of the function key designated

by KEY_ IDENTIFIER. It also returns the index of the last character of the function key name

in LAST.

Parameters:

TERMINAL is an open rile handle on an Input terminal file.

KEYDENTIFIER

is the Identification number of a function key.

KEYNAME Is the name or the key designated by KEY IDENTIFIER.

LAST Is the position In KEYNAME of the last character or the function key name.

Exceptions:

USEERROR Is raised If TERMINAL is not the value of the predefined attribute FILE KIND or
PAGE Is not a value of the predenned attribute TERMINAL KIND or the file
node ssociated with the file Identified by the parameter TERMINAL.

MODE ERROR

is raised if the rile Identified by TERMINAL is or mode OUTFILE or

APPENDFILE.

STATUSERROR

is raised if TERMINAL Is not an open rile handle.

157



PROPO.ED N1IL-TD-CAJS

31 JA N IRNI 39&S

Is raised if the file identified by TERMINAL Is of mode OUT FILE or

APPENDFILE.

STATUSERROR

is raised If TERMINAL is not an open rile handle.

DEVICEERROR
is raised If an Input or output operation cannot be completed because or a

malfunction or the underlying system.

Additional Interface:

procedure GT(ITEm : out SRIG;
LAST : out NATURAL;
ETS: out FUNMCION IIETCRIPTR)

begin
GET(CIJRRFrrINPUT, rTEM. LASr. XEYS);

end G;ET;

Notes:

This procedure will only return function key identification numbers In KEYS If function keys

have been enabled (see Section 5.3.5.11. Otherwise the characters in the ASCII character

sequence representing the function key will appear In ITEM. If there are no elements available

for reading from the Input terminal ile, then LAST ha a value one less than ITEM'FIRST and

FUNCTION KEY COUNT(KEYS) (see Section 5.3.7.15) Is equal to zero.

5.3.7.15. Determining the number of function keys that were read

function FUNCTIOmKEY cort(KEYS : in FUNCTION KEypESCIPTOR)
return ATURA.;

Purpose:

This function returns the number of function keys described In KEYS.

Parameters:

KEYS Is the function key descriptor being queried.

Exceptions:

None.

5.3.7.16. Determining function key usage

procedure rwcTIowKEY (Kys : in rNCTIONJCEY DESC'IPToR;
INDX : In POSITIVE;
KEY _DEWIFIEU : out POSITIE;
POSITIONI : Out NATURA);

Purpose:

This procedure returns the Identification number of a function key and the position In the string

(read at the same time as the runet' -n keys) or the character following the function key.

156

Name



PHOPO'- FD % 111,TD)-( N1,

31 JA.M 'R lOw.;

STATUSERRI It
I- raised If TERMINAL Is not an open file handle.

DEVICE- ERROR
is raised if an Input or output operation cannot be completed because of a
ma function or the underlying system.

Additional Interface:

procedure WT-(fl"E : out CHAfAC E ;
KEYS out -UNCrION-E K-DESRIPTOR)

begin
GE'r(CURRENTIuPtT. ITEM. KEYS);

end Grr;

Notes:

This procedure will only return function key identification numbers In KEYS If function keys
have been enabled (see Section 5.3.5.12). Otherwise the characters In the ASCII character
sequence representing the function key will appear one at a time In ITEM.

5.3.7.14. Reading all available characters from a terminal

procedure GET(TNmmiAL In FILE ITYE;
I :o out fWrING;
LAST Out NATLIML;
KEYS : out FUNCTONi KEY DEscIPTOr);

Purpose:

This procedure successively reads characters and function key Identification numbers Into ITEM
and KEYS respectively until either all positions of ITEM or KEYS are filled or there are no
more characters available In the Input terminal file. Upon completion, LAST contains the index
of the last position in ITEM to contain a character that has been read.

Parameters:

TERMINAL is an open file handle on an input terminal file.

ITEM Is a string of the characters that were read.

LAST is the position of the last character read in ITEM.

KEYS Is the description of the function key Identification numbers that were read.

Exceptionm:

USEERROR is raised If the file Identified by TERMINAL Is not the value or the pr(d-fined

attribute FILE KIND or PAGE Is not a value of the predefined attribute
TERMINAL KIND of the file node associated with the file identified by the
parameter TERMINAL.

MODEERROR

155



PROPOSED MIL-ST1.6CAIS

31 JANCARt) 19&',

USE ERROR is raised if TERMINAL is not the value of the predefined attribute FILE KIND
or PAGE Is mot a value of the predefined attribute TERMINAL KIND of the file

node associated with the file Identified by the parameter TERMINAL.

MODEERROR
Is raised If the file Identified by TERMINAL is of mode OUTFILE or
APPENDFILE.

STATUS-ERROR

is raised if TERMINAL Is not an open file handle.

DEVICEERROR
is raised if an Input or output operation cannot be completed bee: toke or a

malfunction of the underlying system.

Additional Interface:

function mAiamm FcCTION Y
return NATUAL

begin
retur. MAxnimUFUNCTIOICKrY(CUREIiICPUT);

end uAXImUFuNcriONKxEY;

5.3.7.13. Reading a character from a terminal

procedure mmmi(TEMIAL in FILE TIME;
ITEM out OiARACTR;
KIM out FUWCTN KEY DE=tIPTUR);

Purpose:

This procedure reads either a single character Into ITEM or a single function key identification
number Into KEYS from the Input terminal file identified by TERMINAL.

Parameters:

TERMINAL Is an open file handle on an Input terminal file.

ITEM Is the character that was read.

KEYS describes the function key that was read.

Exceptions:

USEERROR Is raised If TERMINAL Is not the value of the predefined attribute FILEKIND
or PAGE Is not a value of the predefined attribute TERMINAL KIND of the file
node a.iociated with the file Identified by the parameter TFRMINAL.

MODE_ EROR
Is raised if the file Identified by TERMINAL is of mode OUTFILE or

APPENDFILE.

154



PROPOSED MIL-TD-( %1-

31 JANtAR) 1gs.
o,

5.3.7.11. Querying echo on a terminal

function S(01 CT INAL : in FILE-TYPE)
return 0ooLEAN;

Purpose:

This function returns TRUE ir echo Is enabled; otherwise It returns FALSE.

Parameters:

TERMINAL in an open fie handle on an Input terminal file.

Exceptions:

USEERROR is raised if TERMINAL Is not the value of the predefined attribute FILEKIND
or PAGE is tjot a value or the predefined attribute TERMINAL_ KIND or the rile
node asoclatd with the file Identified by the parameter TERMINAL.

MODEERROR

is raised if the rile identified by TERMINAL is of mode OUT _FILE or
APPENDFILE.

STATUSERROR

is ra If TERMINAL is not an opennfle handle.

DEVICEERROR
Is raised If an Input or output operation cannot be completed because or a

malfunction of the underlying system.

Additional Interface:

function 00
return 500LEAX

begin
return E01 (cuRR.frINPur);

end 1c01;

5.3.7.12. Determining the number of function keys

function mAu IuM m mo FNC -ON _EY(TENIxAJ. : in FILE TYPE)

return NATURAL;

Purpose:

This function returns the maximum function key Identification number that can be returned by
a GET operation In the input terminal file Identified by TERMINAL.

Parameters:

TERMINAL Is an open file handle on an Input terminal file.

Exceptions:

153



PROPOSED NIL-,TD-C 41

31 JVNIARY 19&

Notes:
After a character Is written In the rightmost position of a row, the active position is the first

position of the next row.

5.3.7.10. Enabling echo on a terminal

procedure SET -EOTE I WAL : In FILE TYPE;
To In .ooLEAN := TRUE);

Purpose:

This procedure establishes whether characters which appear In the input terminal flie identified

by TERMINAL are echoed to Its associated output terminal file. When TO is TRUE, each
character which appears In the Input terminal file Is echoed to the output terminal flc. When
TO is FALSE. each character which appears in the Input terminal file Is not echoed to Its

associated output terminal fie.

Parameters:

TERMINAL is an open file handle on an Input terminal fle.

TO Indicate whether or not to echo Input characters.

Exceptions:

USEERROR Is raised if TERMINAL is not the value of the predefined attribute FILEKIND
or PAGE Is not a value of the predefined attribute TERMINAL _KIND or the file

node associated with the file Identified by the parameter TERMINAL.

MODEERROR
Is raised If the file Identified by TERMINAL is of mode OUT FILE or

APPENDFILE.

STATUS ERROR
Is raised ir TERMINAL Is not an open file handle.

DEVICE_ ERROR
Is raised If an Input or output operation cannot be completed because of a

malfunction of the underlying system.

Additional Interface:

procedure ST EcO(u-v : in 9OOLAUN :- TRmE)

begin
SET ECHO (CIRKErrINPL. TO);

end SET EcHo;

152



end De.L.

5.3.7.9. Writing to the terminal

procedure Pr7T(TUNImAL in FILE TYPE;

Purpose:

This procedure writes a single character to the output terminal file Identifled by TERMINAL
and advances the active position by one column.

Parameter:

TERMINAL is an open file handle on an output terminal file.

ITEM is the character to be written.

Exceptions:

USE-ERROR Is raised If TERMINAL is not the value of the predefined attribute FILE _ KIND or
PAGE is not a value of the predefined attribute TERMINAL KIND or the file
node associated with the file identified by the parameter TERMINAL.

MODEERROR
is raised if the fle identified by TERMINAL is of mode IN FILE.

STATUSERROR
is raised if TERMINAL Is not an open file handle.

DEVICEERROR
i raised it an Input or output operation cannot be completeI because of a

malfunction of the underlying system.

Additional Interfaces:

procedure PUr(ITE : in aRcl)

begin
PUT(CUR.RENr-TTPtT. ITE)

end PiT;

procedure PuT(TmiK,: In FILE 'TYPE;
:TE : in SrRING)

Is
begin

for imEx in ITEI'FIRsT .. rv-.AsT loop
PUT(TERMINAL, ITEM(INDW);

end loop;
end UTt;

procedure MTw(iTEM : In RMING)

begin
PUr (CAuRRENTOUPT. ITEM);

end Kr;

151



PROPOSED MII-STD-CAiS

31 JANL ARN 1985

MODEERROR
is raised If the file Identified by TERMINAL is of mode IN FIIE.

STATUSERROR

is raised ir the file Identified by TERMINAL is not an open file handle.

DEVICEERROR
Is raised ir an Input or output operation cannot be completed because of a

malfunction or the underlying system.

Additional Interface:

procedure TAB(K ND in TAB ENUMERATION := HORIZONTAL;
N: In POSITIVE := 1);

is
begin

TAB(CURRENT OUwTFUr KIND, COJUrr);
end TAB;

5.3.7.8. Sounding a terminal bell

procedure sELL(TERI.AL : in FILE_7,);

Purpose:

This procedure sounds the bell (beeper) on the terminal represented by the output terminal file
Identified by TERMINAL.

Parameters:

TERMINAL Is an open file handle on an output terminal file.

Exceptions:

USE ERROR Is raised Itf TERMINAL Is not the value of the predefined attribute FILE KIND
or PA(E Is not a value of the predefined attribute TERMINALKIND of the file
node -s.-ociated with the rile identified by the parameter TERMINAL.

MOI)_ ERROR

Is raised If the file Identified by TERMINAL Is of mode IN FILE.

STATUS ERROR

is raised it TERMINAL is not an open fle handle.

DEVICEERROR

Is raised If an Input or output operation cannot be completed because of a
malfunction of tce underlying system.

Additional Interface:

procedure mem
Is
begin

BELL (CURR XT r-U T) ;

ISO



31 JAM AR) iuw

KIND Is the kind (horizontal or vertical) of Lab stop to be removed.

Exceptions:

USE-ERROR Is raised If TERMINAL is not the value or the predefined attribute FILE _ 1<NI
or PAGE Is not a value or the predefined attribute TERMINAL_- KIND or (he ile
node assocated with the rile Identified by the parameter TERMINAL, or ir there is
no tab stops of the designated kind at the active position.

MODEERROR
Is raised Ift hentle Identified by TERMINAL is ot mode IN- FI[LE.

STATUSERROR
Is raised It TERMINAL Is not an opentIe handle.

DEN/ICEERROR
Is raised If an Input or output operation cannot be completed bevaiise or a
malfunction of the underlying system.

AddItional Interface:

procedure CLEARTAB (KIND : III TAB ENUVdERATION := HORIZONTAL)
in
begin

CLEAR TAB (CU1RRE~rroIJrT~t. KIND);
end CLEAi TAB;

5.3.7.7. Advancing to the next tab position

procedure TAB(TRMIAmn in FILE -TYPE;
KIND injf TAB ENMERATION := HORIZONTAL;
COUNT : in POSITIVE := 1);

Purpose:

This procedure advances the active position COUNT tab stops. Horizontal advancement causes
a change In only the column number ot the active position. Vertical advancement causes a
change In only the row number of the active position.

Parameters:

TERMINAL Is an open tile handie on an output terminal rilue.

KIND Is the kind (horizontal or vertical) ot tab Rwop to be advanced.

COUNT Is a positive Integer Indicating the number of tab stops the active position Is to
advance.

Exeeptions:

USE _ERROR Is raised it TERMINAL, Is not the value at the predefined attribute FILE _KINI)

or PAGE Is not a value or the predefined at tribitte TERMINAL _KINI)of the rile
node as~wolaied with the rile Identified by tbe parameter TPRMINAl,, or there are
fewer than COUNT tab stops of the designated kind after the active position.

149



w -

PROPOSPED MIl-,Tr)-( k1

31 JANI AR) lus,

Additional Interface:

procedure imNsTSPACE(Cour: in POSITrVE = 1)
Is

begin
INSERT SPACE (CURRENT_01TUT. COUNT);

end INsERT sPACE;

6.3.7.24. Insertinx blank lines in the output terminal file

procedure INSMRT LINE(TERMIAL: in FILETYPE;
COWT: In POSITIVE := 1);

Purpose:

This procedure inserts COUNT blank lines Into the output terminal file at the active line. The
lines at and below the active position are shifted down. The COUNT bottom lines of the display
are lost. The active line is not changed. The column of the active position is changed to one.

Parameters:

TERMINAL Is an open flie handle on an ou put terminal nle.

COUNT is the number or blank lines Io be Inserted.

Exceptions:

USEERROR is raised if TERMINAL is not the value or the predefined attribute FIIE_ KIND
or PAGE is not a value or the predefined attribute TERMINAL_ KIND or the file
node associated with the ile identified by the parameter TERMINAI,, or the value

of COUNT is greater than the number of rows Including and following the active
position.

MODEERROR
is raised if the file identified by TERMINAL is of mode IN _FILE.

STATUSERROR
is raised if TERMINAL is not an open file handle.

DEVICEERROR
s raised ir an Input or output operation cannot be completed because . a
malfunction of the underlying system.

Additional Interface:

procedure INSERTLINE(COUNT: In POSITIVE:= 1)
is
begin

INSERT LINE (CURREIrrNOUTPUT. COUNT);
end INSERT LINE;

163



PROPOSED MIL-STD-C.JS

31 JANU*ARY I9&,

5.3.7.25. Determining graphic rendition support

function GRAPHIC RENDITIONsuPPORT(T' NIAL: in FILE_TYPE;
ENDITION: in GRAPHICRENDITIONARRAY)

return DOOLEA;

Purpose:

This runction returns TRUE if the RENDITION of combined graphic renditions Is supported by
the physical terminal associated with the output terminal file Identified by TERMINAL;
otherwise it returns FALSE.

Parameters:

TERMINAL is an open file handle on an output terminal file.

RENDITION is a combination or graphic renditions.

Exceptions:

USE ERROR Is raised If TERMINAL is not the value of the predefined attribute FILE KIND
or PAGE Is not a value of the predefined attribute TERMINALKIND of the tile
node associated with the file Identified by the parameter TERMINAL, or if the
selected graphic renditions are not supported by the physical terminal associated
with the output terminal file Identified by TERMINAL.

MODEERROR
is raised if the file identifled by TERMINAL is of mode INFILE.

STATUSERROR
is raised If TERMINAL is not an open tlme handle.

DEVICEERROR
is raised if an input or output operation cannot be completed because of a

malfunction of the underlying system.

Additional Interface:

function GRAPHIC RENDITIONSUPPORT (RENDITION:
In GRAPHIC PEITiON ARRAY)

return DOOLEA

return GRAPHIIC RENDITIONSUPPORT (CURRENT UTr. RIF.TION);
end GRmPHIC RENDIT I 0_UPPORT;

5.3.7.26. Selecting the graphic rendition

procedure SECTr GRAPHICRENDITION(TERMINAL: In FILE TYPE:
RENDITION: In GRAPHIC RENDITION ARRAY

DEFAULT GRAPHICRENDITION):

Purpose:

This procedure sets the graphic rendition for subsequent characters to be output to the output
terminal tile.

164



PROPO FD k11,STD-( MI'

31 J%,*t 1R) 1004!,

Parameters:

TERMINAL is an open fle handle on an output terminal file.

RENDITION is the graphic rendition to be used in subsequent output operations.

Exceptions:

USE-ERROR Is raised if TERMINAL is not the value of the predefined at.rlbute FILE-KIND
or PAGE Is not a value of the predefined attribute TERMINAL KIND of the rile
node associated with the file Identified by the parameA r TERMINAL. or if the
selected graphic renditions are not supported by the ph Rical terminal &.ociated
with the output terminal fie identified by TERMINAL.

MODEERROR
is raised If the file identified by TERMINAL is or mode I,% -FILE.

STATUSERROR
is raised if TERMINAL is not an open file handle.

DEVICEERROR
Is raised If an input or output operation cannot be completed because or a
malfunction of the underlying system.

Additional Interface:

procedure sELEcT GRAPHCRENDrTIoN(RENDITON : In
GRAPHIC RENDITIONARRAY
DEFAULT GRAPHIC RENDITION)

begin
SM. CT GRAPHICRENDITION (CURRENTT .P. RENDITION);

end sE CT_ -~iEC RENDITION;

5.3.8. Packsie FORM TERMINAL

This package provides the functionality of a form terminal (e.g., an IBM 327x terminal). A form
terminal consists of a single device (inasmuch as a programmer is concerned).

The scenario for usage of a form terminal has two active agents: a process and a user. Each
Interaction with the form terminal consists of a three step sequence. First, the process creates and
writes a form to the terminal. Second, the user modifies the form. Third, the process reads the
modified form.

A form Is a two-dimensional matrix of character positions. The rows of a form are Indexed by
positive numbers starting with row one at the top of the display. The columns of a form are Indexed
by positive numbers starting with column one at the left side of the form. The position Identified by
row one, column one, Is called the start position of the form. The position with the highest row and
column Index term Is called the end position of the form.

The positloa at which an operation is to be performed Is called the active position. The active
position Is said to advance toward the end position of the form when the indices of its position are

I 65



PROPOSED NI[-STD-C NIS

31 JANUARY 19S5

Incremented. The column Index Is incremented until it attains the highest value permitted ror the

form. The next position Is determined by Incrementing the row index of the active position and

resetting the column Index to I.

A form is divided into qualified areas. A qualified area identifies a contiguous group of positions that

share a common set or characteristics. A qualified area begins at the position designated by an area

qualifier and ends at the position preceding the next area qualifier toward the end or the form.

Depending on the form, the position of the area qualifier may or may not be considered to be in a

qualified area. The characteristics of a qualified area consist or such things as protection (from

modification by the user), display renditions (e.g., Intensity), and permissible values (e.g.. numeric

only, alphabetic only). Each position in a qualified area contains a single printable ASCII character.

5.3.8.1. Types and subtypes

type AREA INTIsITY is
(NONE.

NORMAL,

type AREA PROTECTION is
(W(PROTECTEID.
PROTECTED);

type AREA INPUT is
(GRAPHIC CHARACTRS,

ALPHIABTICS);

type AREA VALUE is
(NO FILL,
FILL WITHZEROES.
FILL WITHSPACES);

type FORM TYPE
(ROw POSITIVE;
COLUMN POSITIVE;
AREA QUALIFIE RREQUIRES SPACE BOOLEAN)

Is private;

subtype FILE TYE is CAIS.10 DEFINITIONS.IFILE- TYPE:

subtype PRINTABL OcARAcTEls is OARACTE range - • .. -;

AREA INTENSITY Indicates the Intensity at which the characters In the area should be displayed

(NONE Indicates that characters are not displayed). AREA PROTECTION specifies whether the

user can modify the contents of the area when the form has been activated. AREA INPUT specifies

the valid characters that may be entered by the user; GRAPHIC _CHARACTERS Indicates that any

printable character may be entered. AREAVALUE indicates the Initial value that the area should

have when activated; NOFILL Indicates that the value has been specified by a previous PUT
statement. FORM _TYPE describes characteristics of forms. FILE TYPE describes the type for

file handles. PRINTABLE CHARACTERS describes the characters that can be output to a form

terminal.



PROPOSED MN4L-;TD-CAJS

31 JANVARI 1985

6.3.8.2. Determining the number of function keys

function MAXMU UNCTIOXN EYCnDMINAL: in FILETYPE)
return NATURAL;

Purpose:

This function returns the maximum function key identifier that can ie returned by the function

TERMINATION_ KEY (see Section 5.3.8.13).

Parameters:

TERMINAL Is an open file handle on a terminal file.

Exceptions-

USE ERROR is raised ir TERMINAL is not the value or the predefined attribute FILE_ KIND
or FORM Is not a value of the predefined attribute TI;,RMINALKIN!) of the flie

node associated with the file Identified by the parameter TERMINAL.

MODEERROR
is raised if the file Identified by TERMINAL is of mode OUT FILE or

APPEND FILE.

STATUS_ERROR
is raised If TERMINAL is not an open file handle.

DEVICEERROR
Is raised If an Input or output operation cannot be completed because of a

malfunction of the underlying system.

Additional Interface:

function AXIUFJNMCTIONKEY return NATuRAL

begin
return AXmtM F_ NTIONKEY(CuRRNTINPUT);

end mAxiwM mvCI .NKEY;

5.3.8.3. Defining a qualified area

procedure DEFINE QUALIFIE AREA
(rO: in out FORM TYPE;

INTENSITY: In AREA INTENSITY := NOMAL;
PRoEcrioN: in AEAm'c :IoN := rc ;
IMNPT: in AmEAINU : A= C aAAR s;
VAL.UE: in AREA VALUE :NO FILL);

Purpose.

This procedure places an area qualifier with the designated attributes at the active position of
the form. A qualified area consists of the character positions between two area qualifiers. The

area Is qualified by the area qualifier that precedes the area. A qualfled area may or may not
include the position or its area qualifier.

167



PROPOSED SIL-STO-CAIS
31 JANUARY 1965

Parameters:

FORM Is the form on which the qualified area is being defined.

INTENSITY Indicates the Intensity at which the qualified area In to be displayed.

PROTECTION Indirates the protection ror the qualified area.

INPUT Indicates the permissible Input characters for the qualified area.

VALUE Indicates the Initial value of the qualified area.

Exceptions:

STATUS-ERROR
Is raised If the active position Is already defined as an area qualifier.

5.3.8.4. Removins an area qualifier

procedure RaOV AREA wmLumlmct: In out FM TYPE);

Purpose:
This procedure removes an area qualifier from the active position or the form.

Parameters:

FORM Is the form from which the qualified ares. Is to be remt-ved.

Exceptions-.

USE_- ERROR Is raised If the active position does not have an area qualifier.

STATUS-ERROR
Is raised It the active position does not contain an area qualifier.

5.3.8.5. Changingx the active position

procedure mriPosToN (FoRm: In out FORM TYPEV
POSITION: In POSITXON-TYPE);

Purpose:

This procedure Indicates the position on the form that Is to become the active position.

Parameters:

FORM is the form on which to change the active position.

POSITION is the new active position on the form.

Exceptions:

LAYOUT-ERROR
Is raised It POSITION does not Identify a position In FORM.



PROPOSED IIL-STD-C 4I'

31 JA~1..RY gw

5.3.8.6. Moving to the next qualifleC' area

procedure =NfT StIFIEDARA(FRM: In out Fm- TM;
CJWT: in POSITIVE : 1)

Purpose:

This procedure advances the active position COUNT qualified areas toward the end of the form.

Parameters:

FORM Is the form on which the active position is being advanced.

COUNT is the number or qualified areas the active position is to be advanced.

Exceptions:

USE-ERROR is raised If FORM has fewer than COUNT qualified areas after the active position.

5.3.8.7. Writing to a form

procedure PUTr(FM: in out F= i TYPE;
rm: In PRINTABLEOIHARACTIER);

Purpose:

This procedure places ITEM at the active position of FORM and advances the active position
one position toward the end position. if the active position is the end position, the active
position is not changed.

Parameters:

FORM is the form being written.

ITEM is the character to be written to the form.

Exceptions:

USEERROR Is raised If the active position contains an area qualifier and
AREA QUALIFIER REQUIRES_ SPACE of FORM was set to TRUE.

Additional Interface:

procedure mr(Fmx: In out From TYpz;

FYD: In rTRmIG)
is
begin

for INDM( In ITEMFITn .. FFZNLAsT loop
PUT(FRM. ITE(IND0O);

end loop;
end rur9

log



PROPOSED MII.STD-CAIS

31 JANVARY 19SM

5.3.8.8. Erasing a qualified area

procedure ERASt m ARErm m: in out Ft3TT );

Purpose:

This procedure places space characters In all positions of the area In which the active position of

the form Is located.

Parameters:

FORM Is the form on which the qualified area Is being erased.

Exceptions:

STATUSERROR
Is raised if no area qualifiers have been defined for FORM.

5.3.8.9. Erasing a form

procedure ERASE P1FOR(FO=N: In out FrmTYPE);

Purpose:

This procedure removes all area qualifiers and places SPACE charreters in all positions of the
form.

Parameters:

FORM Is the form to be erased.

Exceptions:

None.

5.3.8.10. Activating a form on a terminal

procedure ACTTVATm(TERMIxAL: In FIE TYP;
FORM: in out TyP):

Purpose:

This procedure activates the form on the terminal. The contents of the terminal file is modified
to reflect the contents or the form. When the user of the terminal enters a termination key, the

modified contents of the terminal file Is copied back to the form and returned. This operation

may not result In the modification of protected areas.

Parameters:

TERMINAL Is an open file handle on a terminal file.

FORM In the form to be activated.

Exceptions:

USE_ERROR Is raised If TERMINAL Is not the value of the predefined attribute FILE_ KIND
or FORM Is not a value of the predefined attrlbe TERMINAL_ KIND of the file

node associated with the file Identified by th# parameter TERMINAL.

170



PROPOSED NfIL-STD-(*AI',

31 JANAR' 1985

STATUSERROR
Is raised If TERMINAL Is not an open file handle.

5.3.8.11. Reading from a form

procedure GET (FORM: In out FM l-:M;
IrTD: out PMINTAKLE CIHAACTIr);

Purpose:

This procedure reads a character from FORM at the active position and advances the active
position forward one position (unless the active position Is the end position). An area qualifier

(on a form on which the area qualifier requires space) s read as the SPACE character

Parameters:

FORM is the form to be read.

ITEM Is the character that was read.

Exceptions:

None.

Additional Interface:

procedure Grr(ORnM: in out F -r Tm;
ITEM: out STRING)

is
begin

for IxDx in ITlm'r *s'T .. rr.tMLAsT loop
GEFT(FORM. ITE(INDEX)

end loop;
end GET;

5.3.8.12. Determining changes to a form

function is FOM UPDAT12 (Fe: In FR_-nm )
return BOOLYAN;

Purpose:

This function returns TRUE if the value of any position on the form was modified during the
last activate operation In which the form was used; otherwise It returns FALSE.

Parameters:

FORM Is the form to be queried.

Exceptions:

None.

171



PROpO',M) XIII,,Tr -('AV

31 J%\NI*\R1 10A.

5.3.8.13. Determining the termination key

function TMIJIATIONKEY(FO : in FORM TYPE)

return lAuRAL;

Purpose:
This function returns a number that Indicates which (implementatlon-dependent) key
terminated the ACTIVATE procedure for the FORM. A value of zero indicates the normal
termination key (e.g., the ENTER key).

Parameters:

FORM is the form to be queried.

Exceptions:

None.

5.3.8.14. Determining the size of a form

function FoRm sIZ(FOM : in FoRM mYPE)
return POSITIONTYPE;

Purpose:

This function returns the position or the last column of the last row or the form.

Parameters:

FORM Is the form to be queried.

Exceptions:

None.

5.3.8.15. Determining the size of a terminal

function TIRMINAL_ SIZE(TEMINAL: in FILE TYPE)
return POSITIONITPE;

Purpose:

This function returns the position of the last column of the last row of the terminal file.

Parameters:

TERMINAL is an open fle handle on a terminal file.

Exceptions:

USEERROR Is rai.-ed if TERMINAL is not the value or the predeflned attribute FILI,,_ KINI)
or FORM Is not a value of the predeflned attribute TERMINAL KIND or ihe fie
node assoclated with the fie Identified by the parameter TERMINAL.

STATUS ERROR
Is rai sed if TERMINAL Is not an open fle handle.

172

. -- , - , ,



PROPOED MIl,---TI)- .1,

DEVICEERROR
Is raised if an Input or output operation cannot be completed because of a
malfunction of the underlying system.

Additional Interface:

function TERMIKAL SIZE
return POSITION TYPE

return TEInlA. SIZE (CURREM 0rPU);
end T rmNALSIZE;

5.3.8.16. Determining it the area qualifier requires space in the form

function AREA _UALIFIE_REQUIRESsPACE (F M: in FORmTYPE)
return DOOLEAN;

Purpose:

This runction returns TRUE If the area qualifier requires space In the form; otherwise It returns
FALSE.

Parameters:

FORM is the form to be queried.

Exceptions:

None.

5.3.8.17. Determining if the area qualifier requires space on a terminal

function AREA QUALIFIER REQUIRES_SPACE (TERAL: in FILETYPE)

return DOOLEAi;

Purpose:

This function returns TRUE If the area qualifier requires space on the physical terminal
associated with the terminal file Identified by TERMINAL; otherwise it returns FALSE.

Parameters:

TERMINAL Is 'i open file handle on a terminal file.

Exceptions:

USE ERROR Is raised if TERMINAL is not the value of the predefined attribute FILE KIND
or FORM Is not a value of the predefined attribute TERMINAL KIND of the file
node associated with the file Identified by the parameter TERMINAL.

STATUSERROR
Is raised if TERMINAL Is not an open file handle.

DEVICE ERROR

173



PROPOSED NIL-STD-CAIS
31 JANUARN' tW%,

Is raised ir an Input or output operation cannot be completed because of a

malfunction or the underlying system.

Additional Interface:

function AREAQUALiFPIv_REwQtiE_SPACE
return sooLE

begin
return AR.A -QUALIFIE REQIRESM.SPACE (CRMTONPUT);

end AREA QuALIFIEREQIRzSPAE;

5.3.9. Package MAGNETIC-TAPE

This package provides Interfaces for the support of input and output operations on both labeled and
unlabeled magnetic tapes. Interfaces for labeled tapes are designed with carcrul consideration of level
II of the [ANSI 78 standard. These interfaces only support single-volume mag,|etic tape fies.

To use a tape drive, a file handle on the file representing the tape drive must be obtained (see OPILN
In Section 5.3.4.3). The first time a tape Is used. It must be Initialized either as a labeled tape or as an
unlabeled tape. All initialized tapes may be loaded as unlabeled tapes; howevwr, only Initialized labeled
tapes may be loaded as labeled toes. Once a tape has been loaded, CAIS.TEXT_10 routines are
used to get Information to and from the tape.

When information transfer Is completed, the tape Is unloaded and dismounted using the UNLOAD
and DISMOUNT procedures.

Once a tape Is dismounted, another tape may be mounted. When the user is finished utilizing the
drive, he closes the file handle on the fie representing the tape on the drive (see Section 5.3.4).

Magnetic tape drive files can only be created by the implementation. Implementation-defined file
characteristics must be supported by the Implementation and will Include the densities and block sizes
supported by the tape drive, whether or not a tape is mounted on the drive and whether the tape was
loaded as a labeled or unlabeled tape. Each block of a file may be terminated by zero or more fill
characters.

An unlabeled tape is read according to the format:

BOT file * file ... * file *

where * represents a tape mark, ** represents the logical end of tape, and BOT Is the beginnIng of
the tape. For the CAIS, a file on a magnetic tape Is either a text file or a label group. A labeled tape
may be mounted as an unlabeled tape, which causes each label group to be considered as a file. A
label group can be one of the following: a volume header label and a file hiader label, or a file header
label, or an end-of-file label.

A labeled tape Is read according to the format:

174



PROPOSED MLi;TD-( A11

31 JANI AR) 1995

BOT VOLI KDR * flie 0 EOF * HDR * rile *EOF . l-R * rile 0EOF.*

where a represents a tape mark. 0* represents the logical end of tape, DO0T is the beginning or the
tape, VOLI is the volume header label, I{DR Is the flie header label, and EOF is the end-of-Ale label.

5.3.9.1. Types and subtypes

type TAPE POSITON an
(DEG51NNING OF TAPE.
PHIYSICALENDOFTAP!.
TAPE MMR.
Oahfl);

subtype REE. MAME in WIRING;
subtype VOLUME -STRING IN STRING(1. 6);
subtype FILE STRING is STRING (1. 17');
subtype LABEL WRING is STRING (1. .6);
subtype FILE TYP is CAIS .10 DWINIMONS FILE TrPE;

TAPE POSITION describes the position or the tape on the tape drlvf'; a value of TAPE _MARK

means that the tape is positioned just after a tape mark. That Is, a read in this position will read the
next rile or label. A read starting In position TAPE-_MARK will only read a tape mark If there are
two consecutive tape marks on the tape at this location.

REEL-_NAME describes the type used for the external name of a tape fi.e, the name written on the
tape container).

VOLUME_ STRING and FILE_-STRING both have the synt.-X of an Ada identifier.
LABEL-_STRING describes the type used for reading volume header labels. rile header labels and
end-of-ile labels. FILE_-TYPE describes the type for file handles, whl h are used for controlling all
operations on tape drives.

6.3.9.2. Mountinit a tape

procedure MOUNT(TAPE DRIVE: in F ILE -TYPE;
TAPE NM in REELNA-!E.
DENSITY: in POSIT--' 7);

Purpose:

This procedure generate an implementation-d 'fined request that the tape whose external name
Is TAPE _ NAME be mounted on the tape drive represented by the rile identified by
TAPE_-DRIVE. It also requests that the tape drive density be set to DENSITY. Following
completion or' the requested operations, the function IS MOUNTED(TAPE_DRIVFt) will
return TRUE.

Parameters:

TAPEDRI'VE
Is an open fie handle on the rile representing the tape drive.

TAPENAME
Is an external name which identifies the tape to be moi nted on the i:tpr drive.

175



PROPO F.D %11I| TD-(" %1

.31 JAM kRN LOW%.

DENSITY is the density in characters per Inch (e.g.. 800, 1600, 6250).

Exc'eptions:

USEERROR Is raised If MAGNETICTAPE is not the value of the attribute FILE KIND of
the node associated with the fie Identified by TAPE_PRIVE or If
ISMOUNTED(TAPEDRIVE) is TRUE at the time of the call.

STATUSERROR
is raised If TAPEDRIVE Is not an open file handle.

DEVICEERROR
is raised If this operation cannot be completed because of a malfunction of the

underlying system.

5.3.9.3. Loading an unlabeled tape

procedure LAD _uLABM(TAPE_DRIVE: in FiLE-TY;
DENSITY: in POSITIVE;
BLX:KSIZE: In POSITIVE);

Purpose:

This procedure loads the tape on the tape drive represented by the file identified by
TAPEDRIVE. The tape is positioned at the beginning of tape. The DENSITY is validated

against the settings of the tape drive. The block size for subsequent reads and writes is set to
the value of BLOCKSIZE. Following completion of this procedure, the function
ISLOADED(TAPE DRIVE) will return true.

Parameters:

TAPEDRIVE is an open file handle on the file representing the drive.

DENSITY Is the density in characters per inch (e.g., 800. 1600. 6250) at which the tape is to
be read or written.

BLOCKSIZE Is the size of each data block which Is to be read from or written to the file
Identified by TAPEDRIVE.

Exceptions:

USEERROR is raised If ISLOADED(TAPE_DRIVE) is TRUE or
ISMOUNTED(TAPEDRIVE) Is FALSE at the time of the c 'I, or ir DENSITY
Is not the same as the density of the tape drive, or If the block size cannot be

supported by the tape drive.

STATUS -ERROR
Is raised if TAPEDRIVE Is not an open file handle.

DEVICEERROR
Is raised If an Input or output operation cannot be completed because of a

malfunction of the underlying system or If the trpe Is uninitialized.

176



UNCLA*SSIFIED N lFIG 9/2 PL



1II11 "" ,132  2.2

i~~i2.2
INN1 111112.0

MICROCOPY RESOLUTION TEST CHAR
NATIONAL BUREAU OF TAN[ I>[ ,



PROPOSED MII -TID-( ki

31 JAN1'AR, 19.5

6.3.9.4. Initializin g an unlabeled tape

procedure IIITIALIZEUKa.ABELU(TAPt -DRIVE: in FILE TYPE:
DENSITY: in POSITIVE;
ELOCM SIZE: In POSITIVE);

Purpose:

This procedure Initializes the tape which is mounted on the tape drive represented by the file
identified by TAPE DRIVE. The tape drive must have been mounted but not loaded. Ir the
tape Is not positioned at the beginning or tape, then the tape is rewound to It. Two adjacent
tape marks are written following the beginning of tape mark.The DENSITY is validated agairnst
the settings or the tape drive. The block sign for subsequent reads and writes is set to the value
or BLOCKSIZE. The tape is positioned at the beginning or the tape. Initialization places the
logical end of tape at the beginning of the tape. The resulting tape Is an Initialized unlabeled
tape.

Parameters:

TAPE DRIVE Is an open file handle on the file representing the drive.

DENSITY is the density In characters per inch (e.g., 300, 1600, 6250)

BLOCK SIZE is the size of each data block which is to be resd from or wtitten to the file

Identified by TAPEDRIVE.

Exceptions:

USEERROR Is raised if MAGNETICTAPE is not the value of the attribute FILEKIND or
the node associated with the file Identified by TAPEDRIVE, or DENSITY is not

the same as the density or the tape drive, or if the block size cannot be supported
by the tape drive.

MODEERROR
Is raised If the file Identified by TAPE DRIVE is of mode IN FILE.

STATUSERROR
Is raised If TAPEDRIVE is not an open file handle.

DEVICEERROR
s raised If an Input or output operation cannot be completed because of a
malfunction of the underlying system.

Notes:

The first file is written Immediately following the beginning of tape mark, overwriting the two
tape marks written at Initialization.

5.3.9.5. Loading a labeled tape

procedure LOAD LAmE (TAPE DRVE: In FILE TYE;
VOLUME ID lIFIER: In VOLUMEMIITING;
DENSITY: in POSITIVE;
BLOCK SIZE: in POSITIVE);

177



PROPOSED MIL-STD-CAIS

31 JANUARY IMS

Purpose:

This procedure loads the libeled tape on the tape drive represented by the file Identified by

TAPE_ DRIVE. It checks to see that the first block on the volume is a volume header label
("VOLI"). The VOLUMEIDENTIFIER In the parameter list must match the volume

Identifier in the volume header label on the tape. The tape is positioned at the beginning of
tape. The DENSITY is validated against the settings of the tape drive. The block size for
subsequent reads and writes is set to the value of BLOCKSIZE. Following completion of this

procedure, the function ISLOADED(TAPE_DRIVE) (see Section 5.3.9.6) will return TRUE.

Parameters:

TAPEDRIVE Is an open file handle on the file representing the tape drive.

VOLUME IDENTIFIER
Is the name which Identifies the volume.

DENSITY Is the density in characters per inch (e.g.. 800, 1600, 6250) at which the tape Is to

be read or written.

BLOCKSIZE is the size of each data block which Is to be read from or written to the file

Identified by TAPE-DRIVE.

Exceptions:

USEERROR is raised if ISLOADED(TAPE_DRIVE) is TRUE or
IS_MOUNTED(TAPEDRVE) Is FALSE prior to the call, or the
VOLUME_ IDENTIFIER does not match the volume Identifier in the volume

header label on the tape, or if the tape is unlabeled. USEERROR Is also raised if
the block size cannot be supported by the tape drive or, if DENSITY is not the
same as the density of the tape drive.

STATUSERROR
Is raised if TAPEDRIVE is not an open file handle.

DEVICE_ERROR
is raised if an Input or output operation cannot be completed because of a

malfunction of the underlying system.

5.3.9.6. Initializinit a labeled tape

procedure ixIALI z LAULmm(TAE -mRV: In FILE t tPE;
VOLUME IDrFnF=: In VOLUME WMINO;

DENSITY: in PIIzVE;
BLocx IZE: In rosIlE;
ACCESSIIBLXTY: In :RACT ");

Purpose:

This procedure Initializes the tape which Is mounted on the tape drive represented by the file
Identified by TAPEDRIVE. The tape drive must have been mounted but not loaded. If the

tape Is not positioned at the beginning of tape, then the tape is rewound to It. A volume brader

label is written, followed by two tape marks. The tape Is positioned following the volume h,'.der
label. Initialization places the logical end of tape after the volume header label. The DENSITY
Is validated against the settings of the tape drive. The block size for subsequent read% and
writes 0,;tet to the value of BLOCKSIZE. The resulting tape Is an Initialized labeled tape.

175



PROPOSED MIL-ST1-( ,I-

31 JAN 'A R N 98

Parameters:

TAPE DRIVE is an open file handle on the file representing the tape drive.

VOLUME IDENTIFIER
is a six-character string giving the volume name.

DENSITY Is the density In characters per Inch (e.g., 800, 1600, 6250) at which the tape is to be
read or written.

BLOCK SIZE is the size of each data block which Is to be read from or written to the file
Identified by TAPEDRIVE.

ACCESSIBILITY
is a character representing restrictions on access to the tape, in accordance with
[ANSI 78]; a SPACE indicates no access control.

Exceptions:

USEERROR is raised if MAGNETICTAPE Is not the value of the attribute FILEKIND of
the node associated with the file identified by TAPE_ PRIVE, or the
VOLUME_ IDENTIFIER does not match the volume Identifier In the volume
header label on the tape, or if the tape Is unlabeled.

MODEERROR

is raised If the file identified by TAPEDRIVE is of mode IN FILE.

STATUSERROR
is raised If TAPEDRIVE Is not an open file handle.

DEVICEERROR
Is raised if an Input or output operation cannot be completed because of a

malfunction of the underlying system.

Notes:

When the first file is written on the tape, the file header label will follow the volume header
created by this procedure.

6.3.g.7. Unloading a tape

procedure umAA(TAPrz _RIv: In FrLx_.TyP);

Purpose:
This procedure unloads the tape on the tape drive represented by the file Identified by
TAPE_ DRIVE. It rewinds the tape to the beginning of tape and releases the established block
size. Following completion of this procedure, the function IS_LOADED(TAPE DRIVE) will
return FALSE.

Parameters:

TAPEDRIVE Is an open file handle on the file representing the tape drive.

179



PROPOSED MIL-STD-CAJS

31 JANUARY 198J5

Exceptions:

STATUSERROR
Is raised If TAPE DRIVE is not an open file handle.

DEVICEERROR
Is raised If an Input or output operation cannot be completed because or a

malfunction or the underlying system.

Notes:

if no conditions for these exceptions exist and there is no tape loaded on the tape drive, this

procedure has no effect.

5.3.9.8. Diamounting a tape

procedure DISOUiT(TAPE DRIVE: in FILE_1W!);

Purpose:

This procedure generates an Implementation-deflned request that the tape on the tape drive
represented by the file Identified by TAPE_DRIVE be removed from the drive. It makes the
tape available for removal and releases the established density. Following the completion of this

procedure, the function ISMOUNTED (TAPEDRIVE) will return FALSE.

Parameters:

TAPEDRIVE Is an open file handle on the file representing the tape drive.

Exceptions:

USEERROR is raised If MAGNETICTAPE Is not the value of the attribute FILEKIND or
the node associated with the file Identlned by TAPEDRIVE.

STATUSERROR
is raised If TAPEDRIVE Is not an open file handle.

DEVICEERROR
is raised If this operation cannot be completed because of a malfunction of the
underlying system.

Notes:

If no conditions for these exceptlons exist and there Is no tape mounted on the tape dri,'.e this

procedure has no effect.

8.3.9.9. Determining if the tape drive is loaded

function 1s LOADED(TAPE DarE: In FILE TYIP)
return sOOLEtu;

Purpose:

This function returns TRUE if the tape on the tape drive represented by the file Identified by
TAPEDRIVE has been loaded; otherwise It returvis FALSE.

ISO



PROPOSED ML-STD-CAJS
31 JANU'ARY' igs.

Parameters:

TAPEDRIVE Is an openrfle handle on the flie representing the tape drive.

Exceptions:

USEERROR is raised if MAGNETICTAPE is not the value of the attribute FILEKIND of
the node associated with thefle Identified by TAPEDRIVE.

STATUSERROR
Is raised If TAPEDRIVE is not an open file handle.

DEVICEERROR
Is raised If an Input or output operation cannot be completed because or a
malfunction of the underlying system.

5.3.9.10. Determininit if & tape is mounted

function is nuirlw(TAPE DRIV: In FILE TYPE)
return soOEAiN.

Purpose:

This function returns TRU3E If a tape Is mounted on the tape drive represented by the file
identified by TAPE_ DRIVE; otherwise It returns FALSIP.

Parameters:

TAPE_ DRIVE Is an open file handle on t henfle representing the tape drive.

Exceptions:

USEERROR Is raised If MAGNETIC-TAPE is not the value or the attribute FILE-KIND of
the node associated with the nie Identified by TAPEDRIVE.

STATUSERROR
Is raised ir TAPE_ DRIVE, is not an open file handle.

DEVICEERROR
Is raised If an Input or output operation cannot be completed because of a
malfunction of the underlying system.

5.3.9.11. Determining the position of the tape

function TAPE. STATUS (TAPE DRIVE: In FILS-TYPE)
return TAPE-POSITION.

Purpose:
This function returns current Lapp position Information.

Parameters:

TAPE DRIVE Is an opennfle handle on thenfle representing the tape drive.



PROPOSED MIL-STD-CAIS
31 JANUARY 1985

Exceptions:

USEERROR is raised If MAGNETIC-TAPE Is not the value of the attribute FILEKIND of

the node issociated with the file Identified by TAPEDRIVE.

STATUSERROR

is raised if TAPEDRIVE is not an open file handle.

DEVICEERROR

is raised If an Input or output operation cannot be completed because or a

malfunction of the underlying system.

6.3.9.12. Rewinding the tape

procedure REVINDTAPE(TAPE DRIVE: In FILE TYPE);

Purpose:

This procedure positions the tape at the beginning or tape.

Parameters:

TAPEDRIVE Is an open ile handle on the file representing the tape drive.

Exceptions:

USE ERROR is raised if MAGNETIC_ TAPE is not the value or the attribute FII,EKiNI) or
the node associated with the file identified by TAPE DRIVE.

STATUSERROR

is raised if TAPEDRIVE Is not an open file handle.

DEVICEERROR
Is raised If an Input or output operation cannot be completed because or a

malfunction of the underlying system.

5.3.9.13. Skipping tape marks

procedure SKXIPTAPEMUAKS (TAPDRIvE: In FILE-TYPE;
MUM=: in INTEGR:=1;
TAP STATE: out TAPE-POSITION);

Purpose:

This procedure provides a method of skipping over tape marks. A positive NUMBER indicates
forward skipping, while a negative NUMBER indicates backward skipping. If NUMBER Is zero.
the tape position does not change.

Following a call to SKIP TAPE_ MARKS. if NUMBER Is positive, the tape Is positioned
Immediately following the appropriate tape mark. Following a call to SKIP TAPEMARKS.
if NUMIER is negative, the tape Is positioned immediately preceding the appropriate tape mark
(i.e., at the end of a file or label). If two consecutive tape marks are encountered, the tape is
positioned Immediately following the second one, even if fewer than NUMBER tape marks have

been skipped. Additionally, the current column, current line and current page numbers (see

jLRMj 14.3) are set to one.

182



PROPOSED .llII (-"1

31 JANVAR) 10W.,

Parameters:

TAPEDRIVE is an open file handle on the file representing the tape drh e.

NUMBER is the number of ta' marks to skip and the direction of movement.

TAPESTATE

is the position or the tape after skipping the specified number or tape marks.

Exceptions:

USEERROR Is raised If MAGNETIC-TAPE Is not the value of the attribute FILEKIND of

the node associated with the file identified by TAPE DRIVE.

STATUSERROR
is raised if TAPEDRIVE Is not an open file handle.

DEVICE ERROR
Is raised If an Input or output operation cannot be completed because of a

malfunction of the underlying syst ema.

5.3.9.14. Writing a tape mark

procedure WRITETAPE -MAR(TAPE _RI : in FILE-TYPE;
NIDU : In POSITIVE := 1;
TAPE-STATE: out TAPEPOSITION);

Purpose:

This procedure writes NUMBER consecutive tape marks on the tape which Is mounted on the
tape drive represented by the file identified by TAPEDRIVE. The tape is stopped following

the last tape mark written.

Parameters:

TAPE_ DRIVE is an open flie handle on the file representing the tape drive.

NUMBER is the number of consecutive tape marks to be written.

TAPESTATE
is the new position of the tape.

Exceptions:

USEERROR is raised if MAGNETICTAPE is not the value of the attribute FILEKIND of
the node associated with the file identified by TAPEDRIVE or if

ISLOADI';D(TAPE_DRIVE) Is FALSE.

MODEERROR
Is raised if the file Identified by TAPEDRIVE is of mode INFILE.

STATUSERROR
Is raised If TAPE-DRIVE Is not an open file handle.

IR3



PROPOSED MIL-STD-CA i

31 JANUARY t9O&

DEVICEERROR
is raised ir -an Input or output operation cannot be completed because or a
malfunction or the underlying system.

5.3.9.15. Writing a volume header label

procedure VoLUwEFAER(TAPE_DRiVE: in FILE-TYPE;
VOLUM_IDEnTFID: in VOLUMESTRING;
ACCESSIBILITY: In H :A:ACTE "

Purpose:

This procedure writes a volume header label, as described in TABLE X on the tape loaded on
the tape drive represented by the file identified by TAPEDRIVE.

The accessibility character is obtained from the ACCESSIBILITY parameter. The owner

Identification is the user name Indicated by 'CURRENT USER. The Label-Standard Version,
which Is 3. indicates the ANSI standard version to which these labels conform.

Table X. Volume header label

Character
Posltion Field Name Content

I to 3 1 Label Identifier I VOL

4 Label Number 1

6 to 10 1 Volume Identifier I Assigned permanently
I by owner to Identify
I volume

11 1 Accesslbility I Indicates restrictions

on access to the
information on the
volume

12 to 37 1 Reserved for Future I Spaces
8 Itaadardlzatlon I

36 to 51 1 Chner Identity I Identifies owner of
volume

52 to TO I Reserved for Future I Spaces
I Standardization

so I Label-Standard I Indicates the verlon
I version I of the ANSI standard

to which the labels

and data formats on this
volume conform

Parameters:

TAPEDRIVE Is an open file handle on the file representing the tape drive.

VOLUME IDENTIFIER

Is a six-character string giving the volume name.

184



PROPOSED MIL- TD-(.4,1

31 JANk %R' IUS~r

ACCESSIBILITY
is a character representing restrictions on access to3 the tape. in accordance with
(ANSI 781; a SPACE Indicates no access control.

Exceptions:

USEERROR Is raised If MAGNETIC TAPE is not the value of the attribute FILE_ KIND of
the node associated with the file Identified by TAPE -DPrVE. USE ERROR is
also raised If the tape on the tape drive represented by the rile identified by
TAPEDRIVE was loaded as an unlabeled tape or If the value or
VOLUMEIDENTIFIER does not conform to the syntax of an Ada Identifier.
USE ERROR is also raised If ISLIOADED(TAPEDRIVE) Is FALSE at the time
of the call.

MODEERROR
Is raised If the rile identified by T4kPE_ DRIV]E is or mode IN _FILE.

STATUSERROR
Is raised If TAPE_ DRIVE Is not an openfie handle.

DEVICEERROR
Is raised If an Input or output operation cannot be completed because of a
malfunction of the underlying system.

5.3.9.18. Writingx a file header label

procedure FILE HEAER(TAPE ORmY: in FILE -TYPE;
FILE 1DEKiTIFIER. in FILE STRING;.
EXPIRATIGII DATE: in SrING :=" 993661
ACCESSIDIL.IT . in OIARACTE

Purpose:

This procedure writes a file header label, as described In TABLE XCU', on the tape loaded on the
tape drive represented by thenfle Identified by TAPE_ DRIVrE.

Parameters:



PROPOSED MJL- STD-CAIS

31 JANIARY I9&5

Table XM. File header label

Character
Posltion Field Name Content

1 to 3 1 Label Identifier I HDR

4 1 Label Umber I1

S to 21 1 File Identifier I Assigned permanently by

system to identify tile

22 TO 27 1 File Set Identifier I The VOLUME IDENTIFIER

in the f11e get,

28 to 31 I File Section Number 1 0001

32 to 35 1 File Sequence NUmber I Distlnguiehes tilen In a
I file set. First file In

I met gets *0oo1". For
I each file after.

I sequence number Is
I Incremented by one base 10.

3 to 39 Generation Umber 0001

40 to 41 1 Generation Version 1 00

I Number

42 to 47 I Creation Date I Date file header Is
written

48 to 53 Epiratlon Date I Date on which file way be
overwritten

54 AcceSi1itY I Indicates restrictions on
I access to information In
I file

55 to 80 1 Block COUNT 1 000000

61 to 73 1 system Code I spaces

74 to 0 1 Reserved for Future I spaces
I StandardliztIon I

Parameters:

TAPE DRIVF Is an open fle handle on the fle representing the tape drive.

FILE_ IDENTIFIEI?

is a 17-character string giving the fle name.

EXPIRATIONDATE

Is a string Identifying the date (6 characters ' -YYDDD' where YY is the year and

DDD Is the day (001-366)) the file may be overwritten. When the expiration date is

186



P 31 JF-J I r! j-

a space followed by 5 zeroes, the rile has expired. ACCESSIHILITY
is a character representing restrictions on access to the tape, in accordance with

[ANSI 781; a SPACE Indicates no access control.

Exceptions:

USE ERROR Is raised If MAGNETIC TAPE Is not the value of the attribute FI.E _KIND of
the nAe associated with the fie Identified by TAPE DRIVE. USE lIII{OR is
also raised If the tape on the tape drive represented by the file i(lhfltine( h
TAPEDRIVE was loaded as an unlabeled tape or If FILEIDENTIFIEM does not
conform to the syntax of an Ada identifier. USE _ ERROR is also raised If

ISLOADED(TAPE_DRIVE) is FALSE at the time of the call.

MODEERROR

Is raised if the file Identified by TAPE DRIVE Is of mode IN FILE.

STATUSERROR
Is raised If TAPE DRIVE Is not an open rile handle.

DEVICEERROR
Is raised If an input or output operation cannot be completed be:'aus of a

malfunction of the underlying system.

5.3.9.17. Writinji an end of file label

procedure EI)_FILELABEL (TAPEDRIVE: in FILE_1TPE);

Purpose:

This procedure writes an end of fle label, as shown in TABLE XIII on the tape loaded on the
tape drive represented by the rile Identitied by TAPE _DRIVE.

Table XII. End of file label

Character

Position Field Wate Contents

I to 3 1 Labtl Identifier I EOF

4 1 Label Number I

5 to 54 1 Same as corresponding I Same as corresponding
I fields in file header I fields in file header
I label I label

5 to 60 1 Block CW W I lumber of blocks In file

61 to S0 1 Sae as eorrespondlng I Same as corresponding
I fields In file header I fields In file header
I label I label

Parameters:

TAPEDRIVE Is an open file handle on the file representing the tape drive.

187



PROPOIF I LSD.A~

31 I3 4 kRY)'

Except ionsi

ITSE ERROR Is raised ir MAkGNETIC _TAPE is not the value of the attribute FILE-_KINII of
the node associated with the rile identigled by TAPE _DRIVE. USE _ERROU is
also raised If IS _ LOADED(TAPE _DRI[VE) Is FALSE at the Lime or call or if the
tape on the tape drive represent d by the file Identfled by TAPE _DIVE wa-s
loaded as an unlabeled tape.

MODEERROR
is raised if the fle Identified by TAPE_ DRIVE i8 of mode IN-FILE.

STATUSERROR
Is raised if TAPE _DRIVE Is not aRn open file handle.

DEVICEERROR
Is raised If an Input or output operation cannot be completed because of a
malfunction of the underlying syst, rn.

5.3.9.18. Reading a Alabel on a labeled tape

procedure READ LABEL (TAPEDRI-vE. In FiLE TYmE
LABEL: Out LABELSTING);

Purpose:

This procedure obtains th first go characters of the next available block and returns them In
LABEL.

Parameters:

TAPE _DRI VE is an open rile handle on the file representing the tape drive.

L-AmI~l. Is the 80-character string read from the tape.

Exceptions:

USE ERROR Is raised if the attempt to read eighty characters encounters a tape mark or if
MAGNETIC _TAPE is not the value of the attribute FILE _KIN"D of the node
associated with the fme Identified by TAPE_ DRIVE or If
IS _LOADED(TAPE_ DRIVE) is FALSE at the time of the call. USE_ ERROR is
also raised If the tape on the tape drive represented by the file identiied by
TAPE _DRIVE was loaded as an unlabeled tape.

STATt*S ERIR
Is raised If TAPE-_DRIVE Is not an opentie handle.

DEVICEERROR
Is raised if an Input or output operation cannot be completed because of a
malfunction of the underlying system or If the tap Is uninitialized.

Is@



PROF'O't: 1lED )(a-
31 J \\I NK Igt

SKA RWFI ERIRORZ

Is raised If there is no item with the name NAMET).

5.4.1.18. Insertinit a list-type item into a list

procedure INSERT(IST: in out LIST -TYPE;
LISTITrr~: in LIST TYPE;
POSITION: in COUNT);

procedure INSERT(LIST: in out LIST -TYPE;
LIST ITEm: in LIST-TYPE.

NAMED in WAVE-STRING;

POSITION in COUNT);

procedure INSERT(IST: in out LIST-TYPE.
LIsTITEw: in LISTTYPE;
NAMED in TOKENTYPE,

POSITION in COUNT);

Purpose:

This procedure lnserLs a list-type Item Into a list after the list Item specified by POSITION'. A
value or zero In POSITION specineies a position at the head of the list. Subsequent modifications
to the values of LIST or of LIST _ITEM do not affect I other val ue.

Parameters:

LIST Is the list Into which the item will be Inserted.

LIST _ITEM Is the value of the Item to be Inserted.

POSITION Is the position In the list after v. 'sch the Item Is to be Inserted.

NAMED Is the name of the new Item. 11 may only be used with named or empty lists.

Except ions:

1'SF ERROR? is raised If an attempt is madl to Insert a named Item Into an unnamed list or,
conversely, an attempt Is mad, to Insert an unnamed item into a named list or If
LIST Is a named list that airr ly contains an Item with the name NAME.1) or If.
POSITION specifies a value lar 'r than the current length or the list.

5.4.1.1g. Identifying a list-type item by value within a liat

function POSITIONBY VALUE (LIST: in LISTTYPE;
VALUE: in LIST TYPE;
STARTPOSITION: in POSITION COUNT

:=POSITION COUNT'FIRST;
END-POSITION : in POSITIONCOUNT

:POSITION COUNT*LAST)

return POSITIONCOUNT;

P u rpopte:

This function returns the position at which the next list-type Item of the given value Is located.
The search begins fit the START _POSITION and ends when either an Item of value VALUE Is
found, the last Item of the list has been examined, or the item at the END POSITION has
been examined, whichever come, firt.

Parameters:

202



PROPOSED h11I"T1)-( -is

31 J.AN NAR) 1981,

This function locatLes a list-type item In a list and returns In LIST ITEM a copy of it.
Subsequent modifications to the values of LIST or to the value returned in LIST ITEM do not

affect the other value.

'arameters:

LIST is the list containing the item to be extracted.

POSITION Is the position within the list that Identifies the Item to be extracted.

LIST ITEM is the value of the list-type Item extracted.

NAMED Is the name of the Item to be extra .ed. It may only be used with named lists.

Exceptions:

USE ERROR Is raised if the list Is empty or If POSITION has a value larger than the current

length of the list. USE ERROR Is also raised If NAMED is used with an unnamed
list or If the POSITION specification or the name NAMED identifies an Item not of
list-type kind.

SEARCHERROR
is raised If there Is not Item with the name NAMED.

5.4.1.17. Replacing a list-type item in a list

procedure REPLACE(LIST: in out LIST TYPE,
LIST ITEx in LISTTYPE;
POSITION : in POSITIONCOUNT),

procedure REPLACE(LIST: in out LIST-TYPE.
LIST ITE: in LIST TYPE;
NA : iIn NAME TRING);

procedure REPLACE(LIST: in out LISTTYPE;
LIST ITEM: in LIST-TYPE;
NAMED in TOKENTYPE);

Purpose:

This procedure replaces the value of a list-type Item In a list. Subsequent modfi:Liions to the
values of LIST or or I,IST ITEM does not affect the other value.

Parameters:

LIST is the list containing the Item to be replaced.

LIST ITEM Is the value of the new Item.

POSITION Is the position within the list that Identifies the Item to be replaced.

NAMED Is the name of the Item to be replaced It may only be used with named lists.

Exceptions:

USEE' RROR Is raised If NAME'D Is used with an unnamed lis-t, it the POSITION specificattlon or
the name NAMED Identifies an item not of list-type kind. If the list Is empty or or
if POSITION has a value larger than the current length of the list.

201



31 JANUAR 190.4,

Parameters:

LIST is the list of interest.

POSITION is the position within the list that identifies the Item.

NAME Is the token representation or the name of the Item in the named list.

Exceptions:

USE ERROR Is raised If LIST is not a named list. If POSITION has a value larger than the
current length of LIST.

5.4.1.15. Determining the position of a named item

function POSITION_BY_NAME(LIST: in LIST-TYPE;
xwM In NAME STRING)

return POSITIONcouNr.

function POSITION DY NAME (LIST : in LIST-1YPE;
NA!ED: in TOICEMTYPE)

return POSITIONCO JN;

Purpose:

This function returns the position at which an item with the given name NAMED Is located In

LIST. It may only be used with named lists.

Parameters:

LIST is the list In which the position of an item is to be found by name.

NAMED Is the name.

Exceptions:

USE_ ERROR Is raised If LIST Is not a named list or if the list is empty.

SEARCHERROR
Is raised If NAMED is not a name of an item contained in the list.

5.4.1.16. Extracting a list-type item from a list

procedure EXRACT(LIST: in LIST TYPE;
POSITION: In POSITION COUMT;
LISTITEI: Out LIST TYPE);

procedure WrIACT(LIST: In LIST TYPE;
NAED: in xMErs'NGm;
LIST ITEM: out LIST TYPE);

procedure Errcr(LIST: In LIST _TYPE;
NAED: in TOKEN-TYPE;
LIST ITEM: out LISTTYPiE);

P~urpe,0

20



PROPOSED MI-S1'D-CAJS

31 JAINUARY 1985

Parameters:

LIST to the list of Interest.

Exceptions:

None.

6.4.1.13. Determining the length of a string representing a list or a list item

function TEXT_ -LENGTH(LIST: in LIST TYPE)
return NATURAL;

function TENT LENGTH (LIST: in LIST TYPE;
POSITION: In POSITION cawT)

return POSITIVE;

function TEXT -LENGTH (LIST: in LISTTYPE;
mmj: ina NAWESTRING)

return POsITIvE;

function TEXT LENGTH (LIST: In LIST-TYPE;
NAMW: In TOKENTYPE)

return POSITIE;

Purpose:

This function returns the length or a string representing either a list or the list Item identirled
by POSITION or NAMED in a list.

Parameters:

LIST Is the list of interest.

POSITION Is the position within the list that Identifies the item.

NAMED is the name of the list Item.

Exceptions:

USE-ERROR Is raised If POSITION has a value larger than the (existing) length of the list or if
the parameter NAMED Is used with an unnamed list.

SEARCHERROR
Is raised If there Is no Item with the name NAMED.

5.4.1.14. Determining the name of a named item

procedure rTEN NAM(LIST: in LIST TYPE;
POSITION: In POSITION COUNT;
NAME: out TOKEN TYPE);

Purpoow:

This rrocedure returns In NAME the token representation of the name of the item i,, the narnv!
list. as; specified by POSITION.

toog



PROPOED MIL-sTD'-CAIS

31 JANUARYs Ijgy,

empty list. The values or FRONT and BACK are not affected. Subsequent modiflcations t'o the
values or FRONT or BACK or to the value of the returned RESULT list do not affect the other

list.

Parameters:

FRONT Is the first list to be merged.

BACK Is the second list to be merged.

RESULT Is the lst produced by the merge; It has the list items of FRONT in its initial
sublist and those of BACK as the rest of its items.

Exceptions:

USEERROR is raised if FRONT and BACK are not of the same kind and neither or them is an
empty list. USEERROR is also raised If FRONT and BACK are both named and

contain an item with the same name.

5.4.1.11. Extracting a sublist of items from a list

function SET_-ErRACT (LIST: In LIST _TYE;
POSITION: In POSITIONC0UNT;
LEN=: in POSITIVE:= POSTIVE'LAST)

return LIST-TEXT;

Purpose.

This function allows a (sub)list to be extracted from a list. The returned value Is a copy of the
list subset that starts at the Item at POSITION and has LENGTH items in It. Ir there are
fewer than LENGTH Items In this part of the list, the subset extends to the tall of the list.

Parameters:

LIST is the list containing the subset to be extracted.

POSITION Is the position within the list that identlles the subset to be extracted.

LENGTH is the length of the subset.

Exceptions:

USE-ERROR Is raised If POSITION has a value larger thai, the current length of the list.

5.4.1.12. Determining the length of a list

function LENGTH(LIST: in LIST-TYPE)
return coun:

Purpose:

This function returns a count of the numbor of Items In LIST. If LIST Is empty, I,ENGTII
returns zero.

too



PROPO :D w ITDf ,1

LIST is the list or interest.

POSITION Is the position within the list that Identifies the Item.

NAMED is the name or the list item.

'Exceptions:

USEERROR Is raised If the parameter NAMED is used with an unnamed list. ir the list is empty.

If there iS no Item with the name NAMED or if POSITION has a value larger than

the current length or LIST.

SEARCHERROR
is raised if there is no Item with the name NAMED.

5.4.1.9. Inserting a sublist of items into a list

procedure SPLICE(LIST: in out LIST TYPE;
POSITION: in POSITIONCOUNT;
SWLZST: In LISTTEXT);

procedure SPLICz(LIST: In out LIST -TYPE;
POSITION: In POIUTIONCOUNT;
3.1 LIST: in LISTTYPE)

Purpose:

This procedure allows a list to be Inserted Into a list. The Items In the list to be inserted will

become items in the resulting list. Subsequent modifications to the value or LIST or to the value
of SUB LIST do not affect the other list.

Parameters:

LIST is the list Into 4hich a list is to be inserted.

POSITION is the position ater which the new Items will be inserted.

SUB LIST is the list to be inserted.

Exceptions:

USEERROR is raised if SUBLIST as LISTTEXT does not conform to the syntax specified in
TABLE XIV. USE_ ERROR is also raised If LIST and SUB LIST are not or the
same kind and neither of them is an empty list. USE_ ERROR Is also raised if LIST
and SUB LIST are both named and contain an Item of the same name or ir

POSITION has a value larger than the current length of the list.

5.4.1.10. Merging two list.

procedure XERGE (Fiorr: In LIST TYPE;
•ACX: in LISf TYPE;
RESULT: in out LISTTYPE);

Purpose:

This procedure returns In RESULT a list constructed by concatenating BACK to FRONT. The
lists FRONT and BACK must be or the same kind or either FRONT or RACK must be an

107



PRPOr'.ED %11t-;TD-u'AlS

31 JANIAR'I 1g85

Purpose:

This procediure deletes thc Itern specified by I'O,4lTl0N or NAMP!i) from LIST. If' this ws the
last Itern in the list, the kind of the list changes io EMPTY,

Paramieters:

LIST Is the list from which the Item %ill be deleted.

POSITION Is the position within the list thail Identifies the Item to be deleted.

NAMED Is the name or the list item to be deleted.

Exceptions:

USE_ ERROR is raised If the parameter NAMED is used with an unnamed list, If the list Is empty.
If there is no Item with the name .,AMED or It POSITION has a value larger than
the current length or LIST.

SEARCHERROR
is raised it there is no Item with the name NAMED.

5.4.1.7. Determining the kind of list

function CET LIST KIND(LIST: in LIST TYPE)

return LIST-KIND;

Purpose:

This function returns the kind ot the reterenced lit1.

Parameters:

LIST is the list of Interest.

Exceptions:
None.

6.4.1.8. Determining the kind of list item

function GET ITEM KIND (LIST: in LIST-TYPE;
POSITION: in FOSITIONCOUN'T)

return rTEM KIND;

function GET ITEM KIID (LIST: in LIST TYPE;

NAM:D in NAMI STriG)

return ITEM-KIND.

function GET-ITEM KIND (LIST: In LIST TYPE;
NAMED: ina TOKEN TYP)

return ITEM KIND;

Purpose:
This function returns, the kind or an Item In the r fereneed list.

Parameters:

too,



PROP()SED k1I1-STD-(' %1I'

31 JA'NI'.AR) IOR.
,

5.4.1.4. Converting to an external list representation

function TO TEXT (LIST ITEM: In LIST 1TW!)
return LIST_.:r;

Purpose:

This function returns the external representation of the value of the LIST ITEM parameter.
The representation is the string representation defined in Section 5.4.

Parameters:

LIST ITEM is the list to be converted.

Exceptions:

None.

6.4.1.5. Determining the equality of two lists

function istw L(Lisr: In LISTTYPE;
LIST2: In LISTTYP)

return BOOLEAJN;

Purpose:

This function returns TRUE if the values of the two 1it LISTI and LIST2 are equal according
to the following rules, otherwise. It returns FALSE.

Two values of type LISTTYPE are equal if and only If:

a. both lists are of the same kind (I.e., named, unnamed or empty), and

b. both lists contain the same number of list Items, and

c. for each position, the values of list items at this position, as obtained by an EXTRACT
operation, are of the same kind and are equal under the equality defined For this kind,
and

d. in the case of named lists, for each position, the names of the list items at this position
are equal under TOKENTYPE equality (i.e., IS_ EQUAL).

Parameters:

LISTi, LIST2 are the lists whose equality Is to be determined.

Exceptions:

None.

5.4.1.6. DeletinR an item from a list

procedure DELETE(LIrr: In out LIST TYPE;
POSITION: In POSITION COUNT);

procedure DELETE(LIST: In out LIST TYPE;
NAMED: in HAM.STRING);

procedure DELZTZ(LxsT: In out LIST-TYPE;

NAM: In TOM TYPE);

105



PROPO .IED MIL-STD-C ,IS

31 JANtARY 19Ww

CONSTRAINT_ ERROR is raised If an attempt is made to convert a value to a numeric type when
the value does not satisfy the constraints for that type.

5.4.1.2. Copying a list

procedure COPY(TO LIST: Out LIST TYP;
FROMLIST: In LIST Ti );

Purpose:

This procedure returns In the parameter TO LIST a copy of the list value of the parameter
FROM LIST. Subsequent modifications of either list do not affect the other list.

Parameters:

TOLIST is the list returned as a copy of the value of FROM LIST.

FROMLIST Is the list to be copied.

Exceptions:

None.

5.4.1.3. Converting to an internal list representation

procedure TOLIST(LIST- STRING: In STR1NG;
LIST: Out LISrTYPE);

Purpose:

This procedure converts the string representation of a list into the internal list representation.
It establishes the list as a named, unnamed, or empty list. The Individual list Items are classified
according to their external representation. For a numeric Item value, the item Is classified as an
Integer item If the numeric value can be interpreted as a literal of universal _integer type;
otherwise, the numeric Item Is classified as a floating point Item. Blanks. format effectors and
non-printing character are allowed In the value of the parameter LIST STRING.

Parameters:

LISTSTRING
is the string to be interpreted as a list value.

LIST is the list built and returned according to the contents of LISTSTRING.

Exceptions:

USEERROR Is raised If the value of the parameter LIST _STRING does not conform to the
syntax of TABLE X)IV. Blanks, format effectors and non-printing characters are

allowed between lexical or syntactic elements of this syntax.

CONSTRAINT ERROR
Is raised if a numeric literal in the LISTSTRING parameter designates a value
which cannot be represented as the value of an Item In the LIST result.

194



PROPOSED WI1, Tt( NJ,

31 JAN'tAR toS

c. For an identifler list Item or the name of a list Item, the external string representation Is
the Identifier string in upper cae characters.

d. For a quoted string list Item, the external string representation Is the string literal
representing the value of the list item (i.e., the string value enclosed by quotation

characters and with Inner quotation 'haracters doubled).

e. for a list as a list item, the external string representation Is the external representation or

the value of the list.

f. for a list, the external string representation of its vaue is the string representation
composed of the external representation of Its list Items according to the syntax of Table
XIV without blanks, format elTectors or non-printing characters between the lexical or

syntactic constituents or the syntax.

5.4.1. Package LIST-UTILITIES

This package defines types, subtypes, constants, exceptions and general list manipulation interfaces.

The latter are supplemented by generic subpackages for the manipulation of list items of numeric
type.

5.4.1.1. Types and subtypes

type LIST -TYP is limited private;
type TDKENTYPE is limited private;
type LIST-KIND is (UNNAMED. NAE. EMPY).
type 1TEM_KIND is (LIST ITEM. STRING ITEM. ITEGR ITEM,

FLOAT ITEM. IDEMNTFIERITEM);
subtype LISTTIXT is SThING;
subtype NAMESTRING s STRING;
type COUNr is range o .. IxTEGEl'LAsT;
subtype POSITION coUNT is coUNT range COU T'FIRST. 1 .. 1 CUWT'LAST;

LISTTYPE describes the type for lists. TOKENTYPE describes the type for Internal
representations of Identifiers. LISTKIND enumerates the kinds of lists. ITEMKIND enumerates
the kinds of list items. LIST_ TEXT is the type of a list's external representation. NAME STRING
is the type of an identifier or of an Item's name in a named Item In Its external representation.
COUNT describes the type for the length of a list. POSITIONCOUNT describes the type for the
position or an Item In a non-empty list.

EMPTY_ LIST : constant LIST TYPE;

EMPTY_LIST Is a deferred constant denoting the value of an empty list. Any implementation of
the CAIS must ensure that IS_ EQUAL(EMPTY_ LIST, X) Is TRUE for any object X of type
LIST_ TYPE whose value Is an empty list.

SEARCHERROR : exception;

CONSTRAINTERROR: exception;

SFARCH ERROR is raised If a search for an Item fails because the Item Is not present in the list.

193



PH 010-EL) Mtb-TD-C AIS

31 JANI AR)g 194M,

(sub)iIst. Operations to delete an Item or a set or Items are also provided. Insertion and deletion
operations will adjust &be ordinal positions of Items after the Inserted or deleted Items.

The value of an entity of type LIST -TYPE can be represented externally to the packsge
LISTUTILITIES a a string. Interfaces are provided to convert between entities or type STRING.
containing a string value consistent with the syntax or this external representation, and entities or
type LIST_TYPE. An object of type LIST_-TYPE ban a its Initial value the empty list. The RNF
for a.list's external representation Is given in TABLE )CIV.

Table XIV. List external representation BNF

list ::Z named-list
Iunnamed list
Iempty 115?.

named list :=(sned item {*famed item))
unnamed list ::(item {*Item
empty-list ::-C
named -item :: name-string x> ite
Item ::Z list

I quoted string
) lategernmber
I float-number
I Identifier

Integer-number ::= integer
float number : 3decilli1teral

quoted string : stringlitera
name string ::= identifier

Notation:
1. words - syntactic categories
2. C - optional ite"@
3. () - an item repeated zero or more times
4. I - separate@ alternatives

The CAIS defines a canonical external string represuntation for values of type LIST_ TYPE. The
string subtype LIST_ TEXT In used In the CAIS Interfaces for string values that adhere to this
canonical external representation. This ex.ternal representation Is obtained by applying the
TO_-TEXT operation to a value of type LIST_TYP1E or to a value that Is a legal value of a list
Item.

The canonical external string representation of a value of type LIST-TYPE and of its list Items is
defined a foliows:

a. For an Integer list Item, the external strig reprf-mentation Is the decimal represAentaltion or
its numeric value without leading zeroes.

b. For a floating point list Item. the external string representation is the string Image of It-;
numeric value In decimal notation with a format as obtained under lmpiementation-deflned
settings of the FORE, AFT, and EXP pairameters In PUT operations of Ada, TEXT_10
(see [LRMJ 14.3.8). These settings of FORE. AFT, and EXP must guarantee that quality
of the external representation Implies equAlty of the Internal representation and vice versa
within the limitations Imposed by the accramcy of numeric comparlsons in Ada.

192



PROPOSED MtL-sTr A- s

31 JAN'CRA. 19sm

5.4. CAIS Utilities

This section defines the abstract data type LIST TYPE for use by ether CAIS Interfaces. The value
or an entity or type LISTTYPE (referred to as a list) Is a linearly ordered set of data element"
called list items.

It Is possible to associate a name with a list Item. If no name is associated with a list Item. the Item is
an unnamed item. If a name is associated with a list Item, the Item Is a named item. A list can
either contain all unnamed Items, In which case It Is called an unnamed list, or all named items, In
which case It is called a named list. but not both. If a list contains all named Items, names among
these Items must be unique. An empt% list Is a list which contains no Items. Such a list Is not
considered to be either named or usinamed. An empty list can be obtained by using the
EMPTYLIST constant or the DELETI; procedure. The type LISTKIND enumerates these three
classifications of lists.

Associated with each list Item is a classification, or kind. List items are classified as strings, integers,
noat numbers, identifiers and lists. The kind or an Item is a value of the enumeration type
ITEM KIND. The CAIS interfaces allow, but do not require, an Individual implementation of the
CAIS to employ emflcient mechanisms for representing Identifiers as part or lists. Towards this
purpose, a private type TOKEN TYPE is Introduced, which allows Identifiers to be manipulated as
Internal representations called tokens. Interfaces are provided to transform Identifiers In the form of
a NAME STRING into a TOKENTYPE and vice versa. NAMESTRING Is a subtype of
STRING. whose values are assumed to conform to the syntax of Ada Identifiers. Tokens are equal if
and only if their external representations are equal under string comparison, excepting differences in
upper and lower case notation.

The names of list Items In a named list may be Internally represented as tokens. Overloaded interfaces
are provided In the CAIS that allow the names of list Items within a named list to be speelfled by
parameters of either NAME-STRING or TOKEN_TYPE type.

The specifications within this package allow for the manipulation of lists which are of unnamed.
named or empty kind. If a parameter or an interface specifies an Item by position, then that Interface
may be used with either unnamed lists or named lists. If. however, a parameter specifies an Item by
name. t0 'n the associated Interface may only be used with named lists.

Items of a list can be manipulated by:

a. extracting items from a list.

b. replacing or changing values of item.q In a list, and

c. inserting new Items Into a list.

These operations are provided by the EXTRACT. REPLACE, and INSERT subprograms.
respectively. Packages are provided to allow such operations to be performed directly on strings,
Identifiers and lists. Operations on the numeric types are provided with generic packages.

Tie isiltions In the list where these operations are speclird to take place are usually designated by
the parameter POSITION. With named lists a particular Item can he specified by a name. This Is
possible since such names by definition are unique. Specifying a particular Item by name Is only
permitted with EXTRACT and RII'LACE operations.

Insertion operations can also be performed on sets of Items. A owl would then effectively constitute a

191



PROPOSED N1 1,STD-(AI

31 JANI .AR) 190.
5

IMPORT(NODE.HOSTFILENAME);
CLOSE (NODE);

exception
when others =

CLOSE (NOE);
raise;

end IPoRT;

6.3.10.2. Exporting a file

procedure EXWORT (OWE: in UWE TYPE;

NOSTFILENAME : In SMRIG);

Purpose:

This procedure creates a new file named HOST_ FILE NAME in the host file 4ystem and
copies the contents or the flle node identified by NODE into It.

Parameters:

NODE Is an open node handle on the file node.

HOSTFILENAME
is the name or the host file to be created.

Exceptions:

NAMEERROR

In raised If the node identified by NODE Is Inaccessible.

USEERROR is raised if HOSTFILENAME does not adhere to the required syntax for file
names In the host file system or If HOST_ FILENAME cannot be created in the
host file system. USEERROR Is also raised if FILE is not the value of the
attribute KIND of the node Identified by NODE.

STATUSERROR
Is raised If NODE Is not an open node handle.

INTENTVIOLATION
is raised if NODE was not opened with an Intent establishing the right to read
contents.

Additional Interlace:
procedure EvoaRT(Lum: in NAME STRING;

HOSTFILENAME: in SRING);

Is
NODE: NODE TYPE;

been
OPEN (NODE.NAME. (=>READ CONTENTS));
EPORT (NODE. HOSTFILEN.AME);
CLOSE (NODE);

exception
when others =>

CLOSE (NODE);
raise;

end EPORT;

190



PROPOSED MILSTD-,C o,
-

31 JA%';(AR, 19tR,

5.3.10. Package FILE-IMPORT.EXPORT

The CAIS allows a particula: CAIS implementation to maintain fies separately from nle maintained
by the host file system. This package provides the capability to transfer files between them. two
systems.

6.3.10.1. Importing a file

procedure INoWT(XM0E: in "WE TMP;
M-FS LE A: In IlrMIG);

Purpose:

This procedure searches for a file in the host file system named HOSTFILE _ NAME and
copies its contents into a CAIS file which Is the contents or the node identified by NODE. It also
copies any file characteristic Information which must be maintained by the CAIS
Implementation.

Parameters:

NODE is an open node handle on the fie node.

HOST FILENAME
is the name of the host file to be copied.

Exceptions:

NAME ERROR
is raised If the node Identified by NODE Is Inaccessible.

USE-ERROR Is raised If HOSTFILENAME does not adhere to the required syntax for file
names In the host file system or If HOST FILE_ NAME does not exist in the host
file system. USE-ERROR. Is also raised If FILE Is not the value of the attribute
KIND of the node IdentIfied by NODE.

STATUS ERROR
Is raised If NODE is not an open node handle.

INTENT VIOLATION
is raised It NODE was not opened with an intent establishing the right to write
con ten Ls.

SECURITYVIOLATION
Is raised If the operation represents a violation of mandatory access controls.
SECURITY VIOLATION is raised only if the conditions for other exceptions are
not present.

Additional Interface:
procedure iMaRT(xmE: in N A rMSn7TO;

HMST- FXiE_ MaE: In STRING)

IONL:AWE .TYPE;
begin

OPEN (NODE.NAME. (1 =>RITE CONTENTS));

le9



PROPO'*,1-J %I||, TD-( %I,

LIST Is the list In which the position or an Item is to be found.

VALUE is the list-type Item value.

STARTPOSITION
Is the position or the first Item to be considered in the search.

END POSITION
Is the position beyond which the search -A iII not proceed; the search may termirntc

prior to reaching END _POSITION shoudd the Nought list-type item he found or
should the last element or the list be considered.

Exceptions:

USE ERROR Is raised if START POSITION specifies a value larger than the current length of
the list, If the list Is empty or If ENDPOSITION is less than

STARTPOSITION.

SEARCH ERROR

is raised If the VALUE specified is not found within the region specified by
START POSITION and END POSITION.

5.4.1.20. Package IDENTIFIERITEM

This package provides Interfaces for the manipulation or list Items whose values are Identifiers and or
names or list items. Such names and values are represented Internally as values or type
TOKENTYPE.

5.4.1.20.1 Converting an identifier to a token

procedure TOTOKEN(IDETFIEzt: in ME S'rXNG;

TOKEN: out TOKENtt)PE;

Purpose:

This procedure converts the string representation of an Identifier into the corresponding Internal
token representation.

Parameters:

IDENTIFIER is the string to be converted to a tot en.

TOKEN Is the token built and returned according to the value of IDENTIFIER.

Exceptions:

USE ERROR is raised If the value of the parame,-r IDENTIFIER does not conform to the syntax
or an Ada Identifier.

20:4



PROPOSED h1lL-STD-CAZS
31 JANUARX i~&t

5.4.1.20.2 Convertinit a token to an identifier

function TO TEXT(LIST rEM. In TOKEN TYPE)
return NAME STRING;

Purpose:

This function returns the external representation of the value of the LIST ITEM paramcrl(r.
The external representation Is the string repre-sentation deflned in Section 5.4. It adheres 1-o the
syntax required for NAMESTRING..

Parameters:

LIST_-ITEM Is the Item expressed asa token.

Exceptions:

None.

5.4.1.20.3 Determining the equality-of two tokens

function IS-EQUAL(--KENI: In TOKEN-TYPE;
TOXEN2: in TOKEN TYPE);

return BOOLEAN;
Purpose:

This function returns TRUE If the two tokens TOKENI and TOKEN2 represent Ada Identifiers
whose string representation is equal under string comparison, excepting differences In upper and
lower case notation: otherwise, it returns FALSE.

Parameters:

TOKENi. TOKE-N2
are the tokens whose equality Is to be determined.

Exceptions:
None.

5.4.1.20.4 Extracting an identifier item from a list

procedure EXTRACT(LIST: In LIST -TYPE;
POSITION in POSITION COUN
TOKEN: Out TOKEN-TYPE);

procedure EXTRACT(LIST: In LIST_-TYPE;
NAMED: in NAME STRING;
TOKEN: out TOKEN-TYPE);

procedure EXTRACT(LisTr: In LIST TYPE;
NAMED: In TOxEN TYP;
TOKEN: out TOKEN TYP);

Purpose:

This fuinction locates an Identifier Item In a list and returns in TOKEN a copy of Its token.
Parameters:

LI1ST Is the 11:41 containing the item to be extracted.

204



PROPOSED %iL, TD-( AI

311 JANUARN I05,

POSITION is the position within the list that Identifies the Item to be extracted.

TOKEN is the token representation of the Identifier Item.

NAMED is the name or the Item to be extracted. It may only be used with named lists.

Exceptions:

USEERROR is raised if NAMED Is used with an unnamed list ,ir the POSITION specification or
the name NAMED identifies an Item not or token type If the list is empty or if

POSITION has a value larger than the current length of the list.

SEARCIIERROR
is raised if there is no item with the name NAMED.

5.4.1.20.5 Replacing an identifier item in a list

procedure REPLACE(LIST: In out LIST-TYPE;
LIST_ ITEM: in TOKENTYPE;
POSITION: In POSITIONCOUNT);

procedure REPLACE(LIST: in out LIST TYPE;
LIST ITEM: In TOKEN TYPE;
NAMD : in NAME STRING);

procedure REPLACE(LIST: in Out LIST TYPE.
LISTITEM: in TOKEN_TPE;
NAMD: in TOKEN-TYPE),

Purpose:

This procedure replaces the value of an Identifier Item in a list.

Parameters:

LIST is the list containing the Item to be replaced.

LIST ITEM Is the new value of the item.

POSITION Is the position within Il. list that identifies the Item to be replaced.

NAMED Is the name or the Item to he replaced. It may only be used wlih named lists.

Exceptions:

USEERROR Is raised If NAMED Is used with an un. .med list, ir the POSITION specification or
the name NAMED Identifies an Item not or Identifier kind, if the list is empty, or ir

POSITION has a val,, larger than the current length of the list.

SEAR'II- ERROR
is raised If there i% no Item with the name NAMED.

20.



5.4.1.20.6 Inserting an identifier item into a list

procedure INSERT(LIST: I0 out LIST-TYPE;
LIST ITE : In TOKEN TYPE;
POSrIION: in coWrr);

procedure IJSERT(LIST: in Out LIST 1YP;
LIST ITEM: In TOKEE TYPE;
AE: in RAE STING;

POSITION: in CoTm);

procedure INSERT(LIST: in out LIST -WP;
LISTTrm: in TOKEN-TYPE;
NAME : in TOKEN TYPE;
POSITION : in COU=T);

Purpose:

This procedure Inserts an Identifier Item Into a list after the list item specified by POSITION.
A value or zero In POSITION specifies a position at the head of the list.

Parameters:

LIST is the list into which the Item will be Inserted.

LIST ITEM Is the value of the Item to be inserted.

POSITION Is the position In the list after which the item is to be inserted.

NAMED Is the name or the new Item. It may oniy be used with named or empty lists.

Exceptions:

USE ERROR Is raised ir an attempt is made to insert a named Item into an unnamed list or.
conversely, an attempt is made to Insert an unnamed Item into a named list or ir

LIST Is a named list that already contains an Item with the name NAMED.

USE _ ERROR is also raised if POSITION specifles a value larger than the current

length or the list.

5.4.1.20.7 Identifying an identifier item by value within a list

function POSITION BY VALUE (LIST: in LIST TYPE;
VALUE: in TOKEN TYPE;
START POSIITON: in PoSITION couNT

:= POSITION C T'FIRST;
Ei- POSITION : In POSITION COUNT

:P= OSTION COUNT'LAST)
return POSITION COUNT;

Purpose:

This function returns the position at which the next Identifier Item or the given value Is lok'iled.
The search begins at the START POSITION and ends when either an item or valie VAIAIE 1

round, the lst Item or the list has been examined, or the Item at the END _) OSITION ha-%
been examined, whichever comes first.

Parameters:

LIST Is the list In which the positIon of an Item Is 1o be found by valise.

JUt6



PROPOSED} %f11,1)-I ( .,k1,

31 JANAR Aft)iow

VALUE Is the Identifier Item value (token).

STARTPOSITION
is the position of the first item to be considered In the search.

ENDPOSITION
Is the position beyond which the search will not proceed; the search may terminate
prior to reaching END-POSITION should the sought Identifier Item be found or
should the last element of the list be considered.

Exceptions:

USE_ ERROR is raised if STARTPOSITION specifies a value larger than the current length of
the list, if the list Is empty or If ENDPOSITION Is less than
STARTPOSITION.

SEARCHERROR
is raised If the VALUE specified Is not found within the region specified by
STARTPOSITION and ENDPOSITION.

5.4.1.21. Generic package INTEGER-ITEM

This Is a generic package for manipulating list Items which are Integers. This package must be
Instantiated for the appropriate Integer type (Indicated by NUMBER In the specification).

5.4.1.21.1 Converting an integer item to its canonical external representation

function TO TXT(LIST ITE: in JMM)
return STRING;

Purpose:

This function returns the external representation of the value of te LIST _ ITEM parameter.
The external representation Is the string representation defined in Section 5.4.

Parameters:

LIST ITEM is the integer item whose external representation Is to be returned.

Exceptions:
None.

6.4.1.21.2 Extracting an integer Item from a list

function IXTRACT(LIST: in LIST TYPE;
POSITION: In POSITION COUNT)

return NmDU;

function EXTRACT(LIST : In LIST TYPE;
Nmm: in KAmNE Dm10)

return NuNiD;

function EXACT(LrST : in LIST TYPE;
NANO: in TOKEN TYPE)

return NUWDER;

207



PROPO' FP MtL-S.TD-C jJS

31 JNNIARIY 19W.%

Purpose:
This function locates an Integer Item In a list and returns a copy or its numeric value.

Parameters:

LIST Is the list containing the item to be extracted.

POSITION is the position within the list that Identifnes the Item to be extracted.

NAMED is the name or the Item to be extracted. It may only be used with named lists.

Exceptions:

USEERROR is raised Ir NAMED Is used with an unnamed list, If the POSITION specification or
the name NAMED identifies an item not of integer kind, If the list Is empty or if

POSITION has a value larger than the current length or the list.

SEARCHERROR
is raised If there is no item with the name NAMED.

CONSTRAINT ERROR
is raised if the value to be extracted violates the constrants of the type designated
by NUMBER.

5.4.1.21.3 Replacing an integer item in a list

procedure REPLACE(LIer: In out LIST-TYPE;
LIST ITE: in UVBER;
POSITION: in POSITI0NCJUWT)

procedure REPLACE(LIST: In out LIST TYPE;
LIST ITEM: in 1M9Ma;
NAME: In NAMirMNG);

procedure RLAaCLIsT: In out LIST TYPE;
LSTITEm: In iMaii;
NAO : in TOKEN-TP)

Purpose:

This procedure replaces the value or an Iriteger item In a list.

Pp.rameters-

LIST is the list containing the item to be replaced.

LIST ITEM Is the new value or the Item.

POSITION Is the position within the list that Identifies the Item to be replaced.

NAMED Is the name of the item to be replaced. It may only be used with named lists.

Exceptions:

USE ERROR Is raised If NAMED is used with an unnamed list or If the POSITION spiricallon
or the name NAMED Identifies an Item not of integer kind. If the list Is empty or if
POSITION has a value larger than the current length of the list.

20



PRo)F')I 1) %11 -- T[b-( 4L1-

SFARCHlERROR
Is raised if there is no Item with the name NAMED.

5.4.1.21.4 Inserting an integer item into a list

procedure INsTM(LIST: in out LIST TYPE;
LIST ITEM: In EmBeR;
POSITION : In COUNT).

procedure INSEtT(LIST: In out LIST TYPE;
LISTITEmd: in MA&BER;
NAMED in NE STRING;
POSITION : In COUNT);

procedure INSERT(LIST: in out LIST-TYPE;
LIST ITEM: in NUMBE;
NAME: in TOKEN TYPE;
POSITION : In COUT);

Purpose:

This procedure Inserts an Integer Item Into a list after the list item specified by POSITION. A
value or zero In POSITION specifies a position at the head or the list.

Parameters:

LIST Is the list Into which the Item will be inserted.

LIST ITEM is the value or the Item to be Inserted.

POSITION Is the position within the list after which the item is to be inserted.

NAMED is the name or the new Item. It may only be used with named or empty lists.

Exceptions:

USE ERROR is raised If an attempt is made to Insert a named item into an unnamed list or,
conversely, an attempt is made to Insert m unnamed Item Into a named list or ir

LIST is a named list that already conlains an item with the name NAMED.
USE EIRRORI Is also raised If POSITION specifies a value larger than the current
length or the list.

5.4.1.21.5 Identifying an integer item by value within a list

function PosrTIox_y VALUE (LIST: in LIST TYPE;
VALUE: in NUMBER;
sNuiTPOSITION: In POSITION COUNT

:* POSITIONCOUNT"FIRST;

END POSITION: in POSITION COUNT

:= POSITION COUNT'LAST)
return POSITION-COUNT;

Purpose:
This function returns the position at which the next Integer item ot the given value is located.
The search begins at the START_ POSITION and ends when either an item or value VAILUE is
round, the last Item of the list has been examined, or the item at the END POSITION has
been examined, whichever comes first.

Parameters:

209

i.



PROPOSED MIL-STD .CAIS

31 JANUARY 1W

LIST is the list In which the position of an Item Is to be found.

VALUE is the Integer Item value.

STARTPOSITION
is the position of the first item to be considered In the search.

ENDPOSITION
Is the position beyond which the search will not proceed; the search may terminate

prior to reaching END_POSITION should the sought Integer Item be found or

should the last element of the list be considered.

Exceptions:

USEERROR is raised If STARTPOSITION specifies a value larger than the current length of
the list, if the list Is empty or If ENDPOSITION is less than

STARTPOSITION.

SEARCHERROR
s raised or the VALUE specified Is not found within the region specified by
STARTPOSITION and ENDPOSITION.

6.4.1.22. Generic package FLOAT ITEM

This Is a generic package for manipulating list Items which are floating point numbers. This package

must be Instantiated for the appropriate type (indicated by NUMBER in the specification).

5.4.1.22.1 Converting a floating point item to its canonical external
representation

function ToT'nrrc(LsT rI : In Emwt)
return STRING;

Purpose:

This function returns the external representation of the value of the LIST_ITEM parameter.

The external representation Is the string representation defined In Section 5.4.

Parameters:

LISTITEM Is the floating point Item whose external representation Is to be returned.

Exceptions:

None.

5.4.1.22.2 Extracting a floating point Item from a list

function DruaCT(LZ5r: In LIST TYPE;
Poswm : in PosioT corN')

return MUM(DR;

function lrcrAT(LIrr: In LST TYPE;
Rum: In A LinG)

return MPED;

function MfnACT(LIfr: In LIST TYPE;
"teM: in TTU )

return Muu=;

210



31 JANI AR) lug'

Purpose:

This runction locates a floating point Item In a list and return% a copy or its numeric value.

Paramete'rs:

LIST Is the list containing the Item to be extracted.

POSITION Is the position within the list that Identifies the Item to be extracted.

NAMED Is the name or the Item to be extracted. It may only be used with named lists.

Exceptions:

USE-_ ERROR is raised If NAMED Is used with an unnamed list, ir the POSITION specification or
the name NANIED identifies an Item not of floating point kind, it the list is empty
or If POSITION has a value larger than the current length or the list.

SEARCh _-ERROR
Is raised If there is no item with the name NAMED.

CONSTRAINTERROR
Is raised If the value to be extracted violat" the constraints of the type designated
by NUMBER.

5.4.1.22.3 Replacing a floatingt point item into a list

procedure REPLACE(LIST: i out LISTTYPE;
LIST ITEM: in NUMBER;
POSITION: in POSITION-COUNT);

procedure REPLACE(LIST: in Out LIST TYPE;
LIST ITEM: In PNUM;
NAEL In NAME-STRING);

procedure REPL1ACE(LIST: in out LIST TYPE;
LISTITm. in NMBER;
KAMM: in TOKENTYPE).

Purpose:

This procedure replaces the value or a floating point Item In a list.

Parameters:

LIST Is the list containing the Item to be replaced.

LIST _ITEM Is the new value of the Item.

POSITION is the position within the list that Identifies the Item to be replaced.

NAMED) Is the name or the Item to be replaced. It may oniy be used with named lists.

Exceptions:

USE __ EROR Is raised If NAMED) Is ujsed with an unnamed list, If the POSITION specification or

211



PROPOFD MILSTD-CAIS

31 JANUA4RY 19M

the name NAMED identifies an item not of floating point kind, if the list is empty
or if POSITION has a vaJue larger than the current length of the list.

SEARCH _ERROR
is raised If there Is no Item with the name NAMED.

6.4.1.22.4 Inserting a floating point Item Into & list

procedure INSn'r (LIST: In out LIBT TYP:;
LIg rrTl: in 1 m;
PoslIOn: In CONt);

procedure INSER (LIST: in out LIST TYPE;
L1ST ITEn: in emliR;
lNAME : in NA1M STRING;
POSITION: In CO NT) ;

procedure INmT(LIST: In out LIST TYPE;
LIST rTzN: In KWWSEN;
RA' : in ITMM I ;
POSITION: In CaJ'rr);

Purpose:

This procedure Inserts a floating point Item Into a list after the list Iem specified by
POSITION. A value of zero In POSITION specifies a position at the head or the list.

Parameters:

LIST Is the list into which the Item will be Inserted.

LISTITEM Is the value of the Item to be Inserted.

POSITION Is the position In the list after v hich the Item is to be inserted.

NAMED is the name of the new item. It may only be used with named or empty lists.

Exceptions:

USE ERROR is raised Ir an attempt is mad to Insert a named Item into an unnamed list or.
conversely, an attempt is made to Insert an unnamed item into a named list or if
LIST Is a named list that already contains an Item with the name NAMED.
USE ERROR Is also raised If POSITION specifies a value larger than the current
length of the list.

5.4.1.22.5 Identifying a floating point item by value within a list

function POSITION IY VALUE (LIBT: In LIrSTTYPE;
VALUE In mmNa;
START POSItiON: In POSITION-COUNT;

:= POSITION COtNT'FirRST;
END POSITI IN: In POSITION-COUNT;

:P= POSITIONCMIMNTI.AST)
return POSITIONCOUNT;

Purpose:
This function returns the position at which the next floating point item or the given value Is

2

212



located. The search begins at the START _POSITION and ends when either an Item of value
VALUE Is round, the last item or the list has been examined, or the Item at the
ENDPOSITION has been examined, whichever comes first.

Parameters:

LIST is the list In which the position of an Item is to be found.

VALUE Is the floating point Item value.

START-POSITION
is the position or thenfrst item to be considered In the search.

ENDPOSITION
is the position beyond which the search will not proceed: the search may terminate
prior to reaching END_ POSITION should the sought floating point Item be found
or should the last element of the list be considered.

Exceptions:

USE-_ERROR Is raised if START-_POSITION specifics a value larger than the current iength of
the list, or If END _POSITION Is less than START-_POSITION.

SEAkRCH ERROR
is raised the VALUE specified Is not found within the region specified by
STARTPOSITION and ENDPOSITION.

5.4.1.23. PackagSe STRING...JEM

This Is a package ror manipulating list Items which are strings, The external representation of the
value of a string Item is the string returned by an EXTRACT operation applied to the string Item.

5.4.1.23.1 Extractingt a strinst item from a list

function CThACr(LisT.: In LIST TYPL,
POSITION In PoSITION CLSJN)

return MTING.

function ECTRACT(LIST: in LI T TYPE;
IMAM: i NA F STRING)

return MTING.

fUnCtiOn EXTRACT(LIST iD Ll.;T TYPE.
NMED~ In ToKEv_TYPE)

return TrmING.

Purpose-

This function ikwates' a string item in a iist and returns a copy or ii.

Parameters

LIST i,. the l1it rontaining th- item to be extracted

POSITION I-t the pO.it:!i within the list that identifies the item to be extracted.

213I



f'RO P,ED \I,-':TD-( AD.

31 J* N1AR) b1MA:

NAMED is the name of the Item to be extracted. It may only be used with named lists.

Exceptions:

USE ERROR Is raised if NAMED Is used with an unnamed list. If the POSITION specification or

the name NAMED Identifies an item not of string kind, If the list is empty or If

POSITION has a value larger than the current length or the list.

SEARCHERROR
Is raised Ir there Is no Item with the name NAMED.

5.4.1.23.2 Replacing a string item in a list

procedure REPLACE(LIST: In out LIST TYPE;
LIST ITEM: in STRING;
POSITION: In POSITION -COJr);

procedure REPLACE(LIST: in out LISTTYPE;
LISTITEM: in STRING;
NAMED: in KAME STRING);

procedure REPLACE(LIST: In out LIST TYPE;
LIST ITEM: In STRING;
NAMED in TOKEN-TYiE);

Purpose:

This procedure replaces the value or a string Item In a list

Parameters:

LIST is the list containing the item to be replaced.

LIST ITEM Is the new value or the Item.

POSITION Is the position within the list that Identifies the item to be replaced.

NAMED Is the name of the Item to be replaced. It may only be used with named lists.

Exceptions:

USE ERROR Is raised If NAMED Is used with an unnamed list or If the POSITION specification
or the name NAMED identifies an Item not of string kind. If the list is empty or If

POSITION has a value larger than the current length or the list.

SEARCHERROR
Is raised If there Is no Item with the name NAMED.

6.4.1.23.3 Inserting a stringx item into a list

procedure INSERT(LIST: in out LIST TYPE;
LIST ITEM: In STRING;
POSITION: In COUNT);

procedure INSERT(LIST: In out LIST TYPE,

214

-L lll l~~
l l l l l

l l i ll



PROV0'- 1 il--T - A]-

31 JkNI AR la9W,

LISTITEN. in STRING;
KAMMD in NAME STRING;
POSITION in COUNT).

procedure INSERT(LIST: In out LIST TYPE.
LIST _mITE: in STRING.
NAED in TomiCETYPE.
POSITION :in COUNT);

P ur pose:
This procedure Inserts a string Item Into a list after the list item spe-cifled by POSITION. A
value of zero in POSITION specrines, a position at the head or the list.

Parameters:

LIST is the list into which the item will b~e Inserted.

IST _ ITEMI Is the value or the Item to be Inserted.

POSITION is the pos ition In the list after which the Item Is to be Inserted.

NAMED is the name or the new Item. It may only be used with named or empty lists.

Exceptions:

USE FE1ROR1 if, raised If an attempt Is made to Insert a named Item Into an unnamed list or.
conversely, an attempt Is madc to insert an unnamed item into a named list or if
LIST Is a named list that already contains an iwem with the name NAN.11:1)
1, SE ERIROR is also raised ir POSITION speclfles a value larger than the current
length of the list.

5.4.1.23.4 ldentif'ving a string item by value within a flst

function POSITIONDYVALIE (LIST: in LIST-TYPE;
VALUE: in STRING;

START-POSITION: inl POSITION COUNT
=-POSITION COU~rTPIRST;

END-POSITION : in POSITION-COUNT
* =POSITION COUNT*LAST)

return POSITION COUNT;

Purpose:

This function returns the position at which the next string item or the given value Is located.
The search begins at the START _ POS;ITION and ends when either an Item of value VALTE, Is
round, the last Item of the lint has bo-en examined, or the Item at the END-_POSITION has
been examined, whichever comes first.

Parameters:

LIST Is the list In which the p"Ition of an item i., to be rtund by valuie.

VALUE Is the string Item valtie.

STARITPOSITION
Is the position ot the flrsa ''-mi to be conulrdered in the search

215



:31 J.M \R) li0lts

ENI) POSITION
is the position beyond which the search will not proceed; the *earch may termiate
prior to reaching END POSITION should the sought string Item be found or

should the Iast element of the list be considered.

Exceptions:

USE ERROR Is raised If START POSITION speclfles a value larger than the current length of
the list, If the list Is empty or If ENDPOSITION Is less than

STARTPOSITION.

SEAICiI ERROR
Is raised if the VALUE specified is not round ,.ithin the region specified by
STARTPOSITION and ENDPOSITION.

216



:II JANU'4RY 198.

TIME LIMIT: DURATION : NO DELAY);
procedure SET CURRENT NODE(NODE: MODE_ TYPE);
procedure SET_CURRENT NODE(NAME: KAMESTRING);

procedure GETCURRENTNODE
(NODE: In out NODETYPE;
INTENT: INTENTION : (1 => EXISTENCE);
TIME LIMIT: DURATION NO DELAY)'

private
type NODE ITERATOR is

(IMPLEMENTATION DEFINED);
-- should be defined by lmplement-or

end NODEMANAGEMENT";

package ATTRIBUTES is
Use NODE DEFINITIONS;
use LIST UTILITIES;

subtype ATTRIBU TENAME iS STRING;

type ATTRIBUTE ITERATOR is limited private;

subtype ATTRisUTE PATTERN is STRING;

procedure CREATENODE ATTRIBUTE (NODE: NODE TYPE;
ATTRIBUTE: ATTRIBUTE NAME;

VALUE: LIST TYPE);
procedure CREATE_NODE_ATTRIBUTE (NAME: NAMESTRING;

ATTRIBUTE: ATTRI UTE NAME;
VALUE: LISTTYPE);

procedure CREATEPATH_ATTRIBUTE(BASE. NODE-TYPE;

KEY: RELATIONSHIP KEY;
RELATION: RELATION NAME :=

DEFAULTRELATTON;

ATTRIBUTE: ATTRIBUTENAME;
VALUE: LISTTYPE);

procedure CREATEPATH_A'rRIBUTE (NAME: NAME_STRING;

ATTRIBUTE: ATTRIBUTENAME;
VALUE: LIST TYPE);

procedure DELETE_NODE ATTRIBUTE (NODE: NODE-TYPE,
ATTRIBUTE: ATTRIBUTENAME);

procedure DELETrE NODEATTRIB TE (NAmE. NAME STRING;
ATTRIBUTE : ATTRIBUTE NAME).

procedure DELETEPATH ATTRIBUTE(BASE: NODE TYPE;
KEY: RELATIONSHIP KEY;
RELATION: RELATION NAME :=

DEFAULT RELATION:

ATTRIBUTE: ATTRIBUTE NAME);
procedure DELETEPATH ATTRIBUTE(NAME: NAMESTRING;

ATTRIBUTE: AT'TRIBUTE NAME);
procedure SET_NODEATTRIBUTE (NODE: NODE TYPE.

ATTRIBUT : ATTRIBUTE NAME;

VALUE: LIST TYPE);
procedure SET NODE ATTRIBUTE(NAE: NAME STRING;

ATTRIBUTE: ATTRIBUTE NAME;
VALUE: LISTTYPE);

procedure SET PATHATTRIBUTE (BASE: NODE TYPE;

KEY: RELATIONSHIP KEY;
RELATION: RELATION NAME :=

DEFAULT-RELATION;
ATTRIBUTE. ATTRIBUTE NAME;
VALUE: LIST TYPE).

procedure SET_?ATH ATTRIBUTE(NAME. NAME-STRING;
ATTRIBUTE: ATTRIBUTE NAME;

230



31 JNN\ kR 10m85

NODE2: NCDETYPE)
return BOOLE-AN;

function IS sAwE(NAmEI: NAME -STRING;
NAXE2: NAME STnING)

return BOOLEAN;
procedure GET -PARENT

(PARENT: in out NODE TYPE;
NODE: NODE TYPE;
INTENT INTEiTION (I =l > READ);
TIME LIMIT: MlRATION :~NO-DELAY);

procedure copy_-NODE
(FROM: NODE TYPE;
TOBASE: NODE TYPE;
TOKEY: RELATIONSHIP KEY;
TO RELATION; RELATION NME := DEYAULT-RELATION);

procedure COPY NODE (FROM: NODETYPE;
TO: NAMESTRING);

procedure copy TREE
(FROm: NODE TYPE;
TOBASE: NODE TYPE;
TOKEY: REL.ATIONSHIP KE-Y;
TORELATION: RELATION-1MAui : = DEFAULT-RELATION);

procedure copy TREE (FROM: NODE TYPE;
TO: NAMESTRING);

procedure RExAME
(NODE: NODE-TYPE;
NEW BASE: NODE TYPE.
NEW KEY: RELATIONSHIP KEY;
NEW RELATION: RELATION NAME := DEFAULT-RELATION);

procedure RENAME(NODE: NODE TYPTE;
NEW NAME: NAME STRING);

procedure DELETENDE (NODE: in out NODE -TYPE);
procedure DELETE NODE(NAdE: NAXE_STRING):
procedure 1zETI_ TREE (NowE in out NODE T 'YPE);
procedure DELETETR.EE(NE: NAESTRING);
procedure LINK(NODE: NODE-TYPE;

NEWBASE: MODE TYPE;
NEW KEY: RELAiONSHIP KEY;
NEW RELATION: RELATION-NAME := DEFAULTRELATION);

procedure LINX(NODE. NODETYPE;
NEW NAMEE: NAME STRING);

procedure UNL INK CEASE: NODE-TYPE;
KEY: RELATIONSHIP-KEY;
RELATION: RELATION NAME : = DEFAULT-RELATION);

procedure unLiNK(NME: NAME STRING;);
procedure ITERATE

(ITERATVR: out NODE ITERATOR;
NODE: NODE TYPE;
KIND: NODE-KIND;
KEY: RELATIONSHIPKEYPATTERN
RELATION: RELATION NAMAE -PATTERN :=~ DEFAULT RELATION;
PRIMARY-ONLY: BOOLEAN := TRUE);

procedure ITE:RATE
(ITERATUR:. out NOME ITERATOR;

NAME: NAME STRING;
KIND: NODE-KIND;
KEY: RELATIONSHIP KEY PATTERN
RELATION: RELATION NAME PATTERN := DEFAULT-RELATION;
PRI4ARY ONLY: SOOLEAN i= TRUE);

function MORV ITERATOR: NODE TERATOR)
return BOOLEAN;

procedure GrTNEX
(ITERATaR: in out NODE iTERATOR;

NEXT NODE. in out NODE TYPE;
iNTENT: INTENTION (I => EXISTENCE);



PROPO4 D %M1Ls1TO-C.Ais

31 JAN1.XRY 1g8 .5

type TOKEN -TYPE in (IMPLEXE4TATIOM DE.VIXM);
-- should be defined by iuplemetitor
type LIST -TYPE Is (IM(PLEMENTATION DEFIN)
-- should be defined by 1spleu.D0or
EMPTY LIST : constant LIST -TYPE :=(IMPLEMENTATION-DEFINMl);
-- should be defined by ioploeurtor

end LIST UTILITIES.
package NODE_-MANAGEMENT is

Use NOVE DEFINITIONS;
Use LIST -UTILITIE.S;

type NODEITERATOR is limited private:
subtype RLATIONSHIP_KEY_PArrERN in RELATioNHPKEY;
subtype RELATIONNAME PATTERN in RELATION U.ME;

procedure OPEN
(NOVE: in out NODETYPE;

NAJM NAME STRING;
INTENT: INTION := (1 => READ);
TIME LIMIT: DURATION N= ODELAY);

procedure OPEx
(NODE: In out NODe TYPE.

BtASE: NODE rmP;
KEY: RELATONSHIP KEY;

RELATION: RELATION NAME := DElAULTRELATION;
INTENT: INTENTION := (I => READ);
TIME LIMIT: DURATION := NODELAY);

procedure CLoSE(NODE: in out NODETYPE);
procedure CHANGE INTENT

(NODE: in out NODE TYPE;
INTENT: INTENTION;
TIME LIMIT: DURATION = NO DELALY);

function IS OPENCODE: NODE TYPE)
return BOOLEAN);

function INTENT OF (NODE: NODE TYPE)
return INTENTION:

function KIND (NODE: NODETYP)
return NODEKIND;

function PRIMARY NAME(NODE; NODE TYPE)
return maNESTRING.

function PRIMARY KEY(NODE: NODE TYPE)
return RELATIONSHIP KEY;

function PRIMARY RELATION(NODi: NODETYPE)
return RELATION NAME;

function PATH KEYCNODE: N ODE TYPE)
return RELATIONSHIP KEY;

function PATH -RELATION(NODE: NODE TYPE)
return RELATION NAME;

function sAsZ -PATH(AME: NAmE STRImG
return NAMESTRING,

function LAsTr RELATioN(NAM: xAm sTRIN)
return RELATION NAME;

function LAST -KEY(NAmE: NAME STRING)
return RELATIONSHIP KEY;

function IS -OBTAINABLE(NODE: NODE TYPE)
return woLE.Ai;

function IS OBTAINABLE(NAME: NAME-STRING)
return kWOLEAM;

function IS-OBTAINABLE (BASE; NODE-TYPE.
KEY: RELATIONSHIP KEY;
RELATION: RELATION NAME DEFAULT RELATION)

return DOOLEAIE;
function rs-sAxE(NoDE1 NODE TYPE;



31 iANt AR) g

NAMED: NAMESTRING);
procedure REPLACE(LIST: in out LIST TYPE;

LISTITEM: NmmER;
NAMED' TOICEN-TYPE);

procedure INSERT(LIST: ID out LIST-TYPE;
LIST ITEM: NUMME;
POSIIONm COUNT);

procedure INSERT(LIST: in Out LISTTYPE;
LIST ITEM: NUMBER;
NAME5: NAME_STRING;
POSITION: COUNT);

procedure INSERT(LIST: in Out LISTTYPE.
LIST ITEM: NUMBER;
NAMEE TOKEN-TYPE;
POSITION: COUN);

function POSITION BY VALUE
(LIST: LISTTYPE;
VALUE: NUJMBER;
START-POSITION: POSITION COUNT

:POSITION COUNT*FIRST;
END-POSITION: POSITION COUNT

return POSITIONCOUNT; PiTO-ON-AT

end FLOAT-ITEM;
package STRING -ITEM in

function EXTRACT(LIST: LISTTYPE;
POSITION: POSITION-COUNT)

return STRING;
function ErRACT (LIST: LIST TYPE;

NAED: NAME STRING)
return STRING;

function ETRACT(LIST: LIST TYPE;
NAMED : TOKEN TYPE)

return STRING;
procedure REPLACECLIST: in Out LIST TYPE;

LIST-ITEM: STRING;
POSITION: POSITIONCOUNT);

procedure REPLACECLIST: in out LIST TYPE;
LIST ITEX: MTING;
NAMED: MAME STRING);

procedure REPLACE(LIST: in out LIST TYPE;
LISTITEM: 

STRING;'NAME15 TOKENTYPE);
procedure INSERT(LisTr in out LISTTYPE;

LIST-ITEM: STRING;
POSITION: COUN);

procedure INSERT(LIST: in Out LIST TYPE;
LIST ITEM: STRI;
PIAMEED NAME STRING;
POSITION: COUNT);

procedure INSERT(LISTr in out LIST TYPE,
LIST ITEM: STRING;
NAMEED TOKEN TYPE;
POSITION: COUNT;

function Poia B AU
(LIST. LISTTYPE;
VALUE: STRING;
START-POSITI ON: POSITION COUNT

P= OSITIONCOUTPFIRST;
END-POSITION: POSITION COUNT

return POSITION COUNT; STO-OX'AT

end STRG ITM;

private

'27



212

PROPO ;FD tlSTD.C.mjs
3t 198AY g.%

end IDETIFIEftiry.
generic

type NuwnSEt is range >
package IwrsoER iThN is

function To TXT(LISTITEM: NUMSER)
retiurn STRING,;

function EXTRACTCLIST: LIST TYPE;
POSITION: POSITION COUNT)

return NuIESE;
functionl EXTRACT(LIST: LISTTYPE;

KAM: NAWE STrING)
return NUER;

function EXTRACT(LISTr LIST TYPE;
NAED: TOicE TYPE)

return NuUM; ER
procedure ftEPLACE(LIST: in Out LISTTypE;

LIST_ITEM: NUMBER;
prceur RPLCEPOSITION: POSITION COUNT);prceur RPL (ELIST: in out LIST TYPE;

LIST ITEM: NUMBER;
NAM36: NAM TING);Procedure REPLACE (LIST: in out LIST TypE;
LIST ITEM: NUmER;

prceue mER(NAED: TDkEN_ IWE);prceur ISETLIST: in out LIST TypE;
LIST ITU: NUMbElR;
POSITION: COUNT) ;procedure IRT(LIST. in out LIST TYPE;
LIST ITEM: NUMBER;
NAMEED MAEME TING;
POSITION: COUNT;procedure iNsERT(LIST: in out LISTTYPE;
LIST ITEM( NUMBER;
NAM6ED TOKEN TypE;

function POSITION _WVALUE CON)
(LIST: LIST TYPE;
VALUE: Numilt;
START POSITION: POSITION COUNT

END POSITION: POITO C~lTON MF~
POITOSITON OUN

return POSITION COUNTPSMNCON 'AT
end iwmEm R ITtm;
generic

type NUMBER in digits <>,
package FLOAT ITEM is

Ffunction TOTX(LIST ITEM NUIM)
return STRING;

function EXTRACI (LIST: LIST TYPE;
POSITION: POSITION COUNT)return NummE;

function EXRACM(IST: LIST -TyPE;
NAMED: NAME MTING)

return NUMME; -
function EXTRACT(LIST: LISTTypt;

NANEO: TOKEj TMP)
return Num5E;

Procedure REPLACE(LIST: inl Out LIST TYPE
LIST ITEM: Nmm&R;
POSiIoN: POSITION COUNT);procedure REPL.ACE(LIST. in out LIST 7YPE;,
LIST ITEm: jME



PROPOSED ,IT--\1

31 JANA y I1RN

POSITION: POSITION COUNT)
return POSITIVE;

function TEXTLENGTH(LIST: LIST TYPE;

KAMM: KAbESTRING)
return POSITIVE;

function TEXTLENGTH (LIST: LIST TYPE.
NAMED: TOKEN TYPE)

return POSITIVE;

package IDENTIFIER ITEM is
procedure TOTOKEN (IDENTIFIER: MANE STRING;

TOKEN: out TOKEN TYPE);

function TO TEXT (LIST ITEM: TOKEN TYPE)
return NME STRING;

function ISEQUAL(TOKENI: TOKEN-TYPE;
TOKEN2: TOKEN-TYPE)

return BOOLEAN;

procedure EXTRACT(LIST: LIST TYPE;
POSITION: POSITION_COUNT;
TOKEN: out TOKEN TYPE);

procedure EXTRACT(LIST: LIST TYPE;
MAN=: * NAME STRING;
TOKEN: Out TOKEN- TYPE);

procedure EXTRACT(LIST: LIST TYPE;
NAMD: TOKEN TYPE;

TOKEN: Out TOKEN-TYPE);

procedure PEPLk (LIST. in out LIST TYPE;
LIST ITEM: TOKEN TYPE;
POSITION: POSITIONCOUNT);

procedure REPLACE(LIST: in out LIST TYPE;
LIST ITEM: TOKEN_TYPE;
MAm: NAE- STRING);

procedure REPLACE(LIST: in out LIST TYPE;

LIST ITEM: TOKEN TYPE;
MAN16: TOKENTYPE);

procedure INSERT(LIST: in out LIST TYPE;

LIST ITEM: TOKEN TYPE;
POSITION: cOUNT);

procedure INSERTM(LIST: in out LIST TYPE;
LIST rITEM: TOKEN TYPE;
NAMED: M STRING;
POSITION: COUNT);

procedure INSTM(LIST: in out L:ST TYPE;

LIST ITEM! TOKEN TYPE;
NAME: TOKEN TYPE;
POSITION: COUNT);

function POSITIONSYVALUE (LIST: LIST TYPE;

VALUE: TOKEN TYPE;

STARTPOSITION: POSITIONCOUNT

:= POSITION COUNT 'FIRST;
END POSITION: POSITIONCOUNT

* POSITIONCOUNT'LAST)
return POSITION_COUNT;

-225



PROPO',LD % 111P, TD- (AN 1

31 JANt4 R' 100M

procedure INSERT(LIST: in out i.IST TYPE;
LIST ITEM: LIST-TYPE;

NAMED: TOKEN TYPE;
POSITION: COUNT);

function POSIT ION DYVALUE (LI ST: LIST-TYPE;
VALUE: LISTTYPE;
STARTPOSITION: POSITION-COUNT

:= POSITION COuT 'FIRST;
END-POSITION: POSITION COUNT

:= POSITIONCOUNT LAST)

return POSITION COUNT;

function SETEXTRACT(LIST: LIST-TYPE;
POSITION: POSITION-COUNT;
LENGTH: POSITIVE :: POSITIVE'LAST)

return LIST TEXT;

procedure SPLICE(LIST: in out LIST TYPE;

POSITION: POSITION COUNT;
SUB LIST: LISTTEXT);

procedure SPLICE(LIST: in out LIST TYPE;
POSITION: POSITION COUNT;
SUBLIST: LISTTYPE);

procedure DELETE(LIST: In out LIST TYPE;
POSITION: POSITION COUNT);

procedure DELETE(LIST: in out LIST TYPE;
NAMED: NAME STRING);

procedure DELETELIST: in out LISTTYPE;
NAMED: TOKEN TYPE);

function GET LIST XIND(LIST: LIST-TYPE)

return LISTKIND;

function GET_ITEM-_KIND(LIST: LIST-TYPE;

POSITION: POSITION COUNT)
return ITEM KIND;

function GET ITEMKIND(LIST: LIST TYPE;
NAMEM: NAMESTRING)

return ITEM_KIND;
function GET ITEMKIND(LIST: LIST TYPE;

NAMM: TOKENTYPE)
return ITEM KIND;

procedure MERGE(FRONT: LIST TYPE;

BACK: LIST TYPE;

RESULT: in out LIST TYPE);
function LENGTH(LIST: LIST TYPE) return COUNT;
procedure ITEMNAME (LIST: LIST-TYPE;

POSITION: POSITION COUNT;

NAME: out TOKENTYPE);
function POSITION TYNAME (LIST: LIST TYPE;

NAMED: NAMESTRING)
return POSITIONCOUNT;

function POSITIONBY_NAME(LIST: LIST-TYPE;

NAMED: TOKEN TYPE)
return POSITIONCOUNT;

function TEXT LENGTH(LIST: LIST TYPE)

return NATURAL;
function TEXTLENGTH(LIT: LIST TYPE;

224



PROPOSED .46-STD-C.MS

31 JANUARY' 1gs8

L.DCX ERROR: exception;
ACCESS VIOLATION: exception;
INTENT1 VIOLATION: exception;
SCLUITI vioLATION: exception;

private
type MWz TYPE is

(IMPLEMENTATION DEFINED).
-- should be detined by luplesentor

end NoDE DEuINITONS;

package LIST UTILITIS is
use NODE DUFINITIONS;
type LIST -TYPE Is limited private;
type TOKEN TYPE is limited private;
type LIST KIND I* (UNNAMED. NAME. EMPTY);
type IlTMKIND in

0.1sTi ITEM. FTRNG, ITEM.
INTEES1ThN. FLOT ITEM. IDENTIFIES 1T);

type COUNT Is range 0 .. IXTEGRUAS;

subtype LISTTX Is STRING;

subtype POSITON cmwr ii COUWf range COUNT'FIRST *I CCRJT*LAST;

FiFTYLIST: constant LIST TYPE;
SEAER: exception;
coNsTRAirr EStnR: exception;

procedure COPY (TO -LIST; out LIST TYPE;
FRiOM LIST: LIST TYPE);

procedure TO LIST (LIST STRING: S MING;
LIST: Out LIST TYPE);

function TO TECT (LIST ITM: LIST-TYPE)

return LIST TEXT;
function IS-EWJAL.(LISTI: LIST-TYPE;

LIST2: LIST-TYPE)

return BOOLEAN;

procedure ENTACT(LIST: LIST , YPE;
POSITION: POSITION COUNT
LIST ITEM: out LIST TYPE);

procedure FirlRACT(LIST- LIST TYP;
NAED: NAwE STRNG;
LIST ITEM: out LIST TyPE);

procedure ENTRAC(LIST- LISTr TYPE;
NAME: TUOE TYPE;
LIST -ITEM: out LIST TYPE);

procedure REPLACE (LIST: In out LIST - YPE;
LIST ITM: LIST TYPE;
POSITION: POSITION COUNT;

procedure REPL.ACE (LIST: In out LIST -TYPE;
LIST ITEM: LIST TYPE;
RAi: NAME STRING);

procedure REPLACE(IST: i0 out LIST -TYPE;
LIST ITEM: LIST TYPE;
NAM5: TOKEN TYPE);

procedure INsUT(LIST: In out LIST T YPE:
LIST ITEM: LIST TYPE;
POSITION: COUNT);:

procedure INSERY(Lirr: In out LIST -TYPE;
LIST ITEM: LIST TYPE;
NA&: NAME STRING;

POSITION: CON;

223



PROPOSED NIIL-STD-C 1S

31 JANUARY 191.

Appendix B
CAIS Specification

This appendix contains a set of Ada package specifications of the CAIS interfaces which
compiles correctly. It brings together the Interfaces found in Section 5 using the Nested Generic
Subpackages Implementation approach. Although the interfaces are not necessarily shown here
in the order in which they are discussed in the text, this appendix provides a reference listing or
the CAIS as well as an illustration or the generics approach.

with CALENDAR;
use CALENDAR;
package cws is

package NODE-DEFINITIONS if

type NODETYPE is limited private;
type NODE KIND is (FILE. STRUCTURAL. PROCESS);
type INTENT SPECIFICATION Is

(ISTNCE.
READ.
WRITE.
READ ATTRIBUTES.
WRITE ATRmIBUTES.

APPENE ATRIBrrES.
READ RELATIONSHIPS.
WRITE RELATIONSHIPS.
APPEND RELATIONSHIPS,
READ CONTENTS.
WRITE CONTENTS,
APPExE CONTENTS
CONTRO.

EXCUSIVE READ.
amLZsmV WRITE.
ExcLusVEADATTR IomIEs,
ExaLusrit wRITE ArTRiETErs.
ExCLUs IV APPEND ATRITESI.
ExCLusit WREAD ELATiONSNiPS.
EXCLUSIVE WRITE RELATIONSHIPS.
ExCLusrVEAPPEND RELATIONSHIPS.

CLt srE aREA CONTENTS.
ExaLusri I!WRITE CONTENTS.
ExCLusIVE APPEND CONTErTS.
ExcLusr-v coN-E);

type INTEwrNION array (POSITIVE range <>)
of INTErr SPECIFICATION;

subtype NAME STRING is STRING;
subtype RELATIONHIP _ KEYl STRING;
subtype RELATION NAME is STRING;
subtype FORMSRmIm is STRING;

CURRENT USU: constant NAME STRING : CURRENTUSER-;
CURRENTNODE: constant NAME STRING : "CURRENTNODE";
CURRENT-PROCESS: constant NAME STRING 'f: ';
LATEST KEY: constant RELATIONSHIPEY := K 'E;
DEFAULT-RELATION: constant RELATIONNAM :.00T'
NO-DELAY: constant DURATION := DURATION'FIRST;

KNE ERROR: exception;
USE iRROR: exception;
STATUSERUO: exception;

222



PROPOSED \IIL-STD-4 \I'

31 JA.NI It'N 19-S

applies to process nodes; designates the classification or the node's process as a
subject; values ar lmplementatlon-deflned.

TERMINALKIND:
applies to file nodes with a FILE_-KIND attribute value of TERMINAL; designates
the kind of terminal which Is represented by the node's contents; possible values are
SCROLL. PAGE and FORM.

Predeflned Attribute Values:

ABORTED
APPEND
APPEND_-ATTRIBUTES
APPENDCONTENTS
APPENDRELATIONSHIPS
CONTROL
COPY
DIRECT
EXECUTE
EXISTENCE
FILE
FORM
MAGNETICTAPE
MIMIC
PAGE
PROCESS
QUEUE
READ
READATTRIBUTES
READCONTENTS
READRELATIONSHIPS
READY
SCROLL
SECONDARY_ STORAGE
SEQUENTIAL
SOLO
STRUCTURAL
SUSPENDED
TERMINAL
TERMINATED
TEXT
WRITE
WRITE_-ATTRIBUTES
WRITECONTENTS
WRITERELATIONSI IPS

221



PROPOS'ED MIL-STD-CAIS

31 JANUARY It85

FINISH TIME:
applies to0 process nodes; designates the Implementation-denfned time at which the

process terminated'or aborted.

GRANT: applies to relationships of the predefined relation ACCESS; designates the acems

rights which can be granted via the access relationship; values are lists of relevant
grant Items as specified In TABLE I!.

HANDLESOPEN:
applies to process nodes; designates the number of node handles the node's process
currently has opened.

HIGHEST CLASSIFICATION:

applies to file nodes: designates the highest allowable object classification label that
may be assigned to the node; values are Implementation-defined.

10 UNITS: applies to process nodes: designates the number of GET and PUT operations that
have been performed by the node's process.

KIND: applies to all relationships; designatoes the kind of the target node; possible values
are STRUCTURAL. PROCESS and FILE.

LOWEST CLASSIFICATION:

applies to file nodes; designates the lowest allowable object classification label that
may be assigned to the node: values are Implementation-defined.

MACilINE TIME:
applies to process nodes; designates the length of time the process was active on the
logical processor, if the process has terminated or aborted, or zero. if the process has
not terminated or aborted.

OBJECT_ CLASSIFICATION:
applies to all nodes; designates the node's classification as an object; values are

implementation-defined.

PARAMETERS:
applies to process nodes; designates the parameters with which the process was

Initiated.

QUEUE_KIND:
applies to file nodes with a FILE KIND attribute value of QUI UE: designates the
kind or queue file; possible values are SOLO, MIMIC and COPY.

RESULTS: applies to process nodes; designates the Intermediate results of the process; values
are user-defined.

START TIME:
applies to process nodes; designates the Implementation-defined I me or activation of

the process.

SUBJICT CLASSIFICATION:

220



PROPO-ED %1Ih TD-( %I-

31 JAMVARN, 19.W

representing a device to which the process has acces. Also designates a primary
relationship from the system-level node to a node representing a device.

DOT: designates the derault relation name to be used when none is provided. Special
rules apply for pathname abbreviatons In the presence ol path elements whose

relation name Is DOT. No other semantics are associated with DOT.

JOB: designates a primary relationship from the top-level nod., or a user to the root
process node or a Job.

PARENT: designates the secondary relationship from a given node to the node which is the
source of the unique primary relationship pointing to the given node.

PERMANENT MEMBER:
designates a primary relationship from a node representing a group to the node
representing a permanent member of the group.

POTENTIAL MEMBER:

designates a secondary relationship froni a node representing a group to the node
representing a potential member or the group.

STANDARD - ERROR:

designates the secondary relationship from a process node to a rile node representing
the standard device for error messages for the whole Job.

STANDARD _INPUT:
designates the secondary relationship from a process node to a file representing the
standard input device for the whole Job.

STANDARD OUTPUT:
designates the secondary relationship from a process node to a flle node representing

the standard output device for the whole Job.

USER: designates a secondary relationship from a process node to a user's top-level node.

Also designates a primary relationship from the system-level node to a top-level
node representing a user.

Predefined Attributes:

ACCESS - METHOD:
applies o file nodes; designates the kind of access which can be used on the node's
contents; possible values are SEQUENTIAL, DIRECT and TEXT.

CURRENT STATUS:
applies to process nodes; designates the current status of the node's contents;

possible values are READY, SUSPENDED, ABORTED and TERMINATED.

FfLEKIND: applies to file nodes; designates the kind or file that Is the nuc * contents; possible
values are SECONDARY_ STORAGE, QUEUE, TERMINAL and

MAGNETICTAPE.

219



PROPOI-ED %1 II,;TD-('.I S

3 1 J NNI.AR) 19M.

Appendix A
PREDEFINED RELATIONS, ATTRIBUTES AND

ATTRIBUTE VALUES

Predefined Relations:

ACCESS: designates a secondary relationship from an object node to a node representing a
role; the access rights that can be granted to adopters of the role are given in the
GRANT attribute of this relationship.

ADOPTEDROLE:
designates a secondary relationship from a subject (process) node to a node

representing a role; Indicates that the process has adopted the role represented by
the node.

ALLOWACCESS:
designates a secondary relationship from a process node to a node representing a
role; indicates that the process can create relatlonshipe of the predefined relation

ACCESS from an object to this node representing the role.

COUPLE: designates a secondary relationship from a node representing a queue file to the
node representing that file's coupled file: indicates that the queue file and the other
file are coupled; for copy queue files, this means the contents of the file are the
initial contents of the queue ile; for mimic queue files, this means that the contents

of the file are the initial contents of the queue file and subsequent writes to the
queue file are appended to the other file as well.

CURRENTERROR:
designates a secondary relationship from a proces node to a file node representing
the file to which error messages are to be written.

CU'RRENTINPUT:
designates a secondary relationship from a process node to a file node representing
the file which is currently the source of proces Inputs.

CURRENT-JOB:
designates a secondary relationship from a process node to the root process node of
the tree which contains the process node.

CURRENTNODE:
designates a secondary relationship from a process node to the node representing
the current focus of attention or context for the process' activities.

CURRENTOUTPUT:
designates a secondary relationship from a process node to a file node representing
the file to which outputs are currently being directed.

CURRENTUSER:
designates a secondary relationship from a process node to a top-level node
representing the user on whose behalf the process was Initiated.

DEVICE: designates a secondary relationship from a process node to a top-level node

218



31 JA R) 19$45y

6. NOTES

8.1. Keywords

The rollowing list represents the keywords applicable to this standard. These keywords may be uised
to categorize the concepts presenr-d within this standard and assist In automatic retrieval or
appropriate data iised In automnated document retrieval systems.

Ads
APSE
CAI$
Comeco APSE Interface Set
comnputer file system
KAPSE
high level languages
inter faces

S interoperability

programingsupreniomt
software engineering envirorment
transportability
virtual operating system

217



PROPOSED \IIIP ZTD C Us

31 JMNtARN lo,

VALUE: LISTTYPE);

procedure GETNODE ATTRIBJTE (NODE: XODETYPE;

ATTRIBJTE: ATTRIB UTE NAME;
VALUE: in out LIST TYPE);

procedure GETNODEATTRIBUTE (NAME: NAE STRING;
ATTRIBUTE ATTRIBUTE NAME;

VALUE: in Out LIST TYPE);
procedure GET PATHATTRIBUTE (BASE: NODE TYPE;

KEY: RELATIONSHIP KEY;
RELATION: RELATION NAME :=

DEFAGLT RELATION;
ATTRIBUTE: ATTRIBUTE NAME;

VALUE: in out LIST TYPE);
procedure GET PATH ATTRIBUTE xNAME: fAM STRING;

ATTRIBUTE: ATTRIBUTE NAME;
VALUE: in out LIST TYPE);

procedure NODE ATTRIBUTE ITERATE(ITERATOR: out ATTRIBUTEITERATOR;
NODE: NODE_TYPE;
PATTERN ATTRIBUTE PATTERN := * )

procedure NODEATTRIBUTEITERATE(ITE:RATOR: Out ATTRIBUTEITERATOR;
NAK: NAME STRING;
PATTERN: ATTRIBUTE PATTERN = -

procedure PATH ATTRIBuTErTEATE(ITERATOR: Out ATTR IBUTEITERATOR;
BASE: NODE TYPE:
KEY: RELATIONSHIP KEY;

RELATION: RELATION NAME :=
DEFAULT RELATION;

PATTERN: ATTRIBTrE PATTERN =
procedure PATHATTRIBUTE ITERATE(TERATOR: Out ATTRIB UTE ITERATOR;

AME: NAME STRING;

PATTERN: ATTRIBUTEPATTERN = "
function MORME ITERATOR: ATTRIBUTE ITERATOR)

return BOOLEAN;
procedure GETNEXT(ITERATOR: in Out ATTRIBUTE ITERATOR;

ATTRIUTE: out ATTRIBUTE NAME;
VALUE: in out LIST-TYPE) .

private

type ATTRIBUTE ITERATOR if (IMNPENTATION_DEFIND);

-- sbould be defined by Isplenteor

end ATTRIbUTES;

package ACCESS CONTROL is

use NODE-DEFINITIONS;

subtype GRWETVALUE !a CAIS. LIST UTILITIES. LISTTYPE;

procedure SETACCESS CONTROL (NODE: NODETYPE;
ROLE NODE: NODETYPE;
GRANT: GRANT VALUE);

procedure SETACCESS CONTROL (NAME: NAMESTRING;
ROLE NAME: NAMESTRING;
GRANT: GRANT VALUE);

function IS GRArrE(OBJECT NODE: NODE TYPE.
ACCESS RIGHT: NAME STRING)

return BooM1AN;
function IS GRANTED (OB JECTNAME: NAME -STRING;

ACCESS -RrGT: NAME-STRING)
return OOL.EA;

procedure ADOPT(ROLE NODE: NODE TYPE.
ROLE KEY: RELATIONSHIP aKEY -- LATEsTKEY);

procedure UNA.DOPT(ROLEKEY: RELATIONSHIP KEY):
end ACCESS CONTROL;

package SRUC'rAL nDES is
use NODEDEFINITIONS;

2.31



PROPO'FD IL-T-CI

.11 JANt kR% 10W,

use LISTUTILITIES;

procedure CREATE NOD0E
(NODE: in out NODE TYPE;
BASE: NODE TYPE.
KEY: RELATIONSHIP-KEY :=LATEST-KEY;
RELATION: RELATION-NAME :=DEFAULTRELATION;
ATTRIBUTES: LIST TYPE EMPTY LIST.
ACCESS CONTROL: LI1ST TYPE :=EMPTY LIST:
LEVEL: LIST TYPE : TY-LIST);

procedure CREATE -NODE
(NODE: in out NODE TYPE;
MAIM: lAME STRING.
ATTRIBUTTES: LIST TYPE EMPTY LIST;
ACCESS CONTROL: LISTTYPE DOEMTY LIST;
LEVEL: LIST-TYPE EmTY LIST);

procedure CREATE NODE
(BASE: NODE TYPE:
KEY: RELATIONSHIP-KEY := LATESTKEY;
RELATION: RELATION NME := DEFAULT RELATION;
ATTRIBUTES: LIST TYPE DOEMTY LIST;
ACCESS_-CONTROL: LIST TYPE :=EM PTY LIST;
LEVEL: LIST TYPE : EMTY-LIST);

procedure CREATEYODE
(NAME: NAMESTRING;
ATTRIBUTES: LIST TYPE :EMPTY LIST;
ACCESS -CONTROL: LIST TYPE :~EMPTY LIST;
LEVEL. LIST-TYPE :EMPTY LIST);

end grRuc75JRAL NODES;

package PROCESS_-DEFINITIONS in
Use NODE DEFINITIONS;
UUe LIST UTILITIES;

type PROCES STATUS is
(READY. SUSPENDED. ABORTED. TERMINATED);

subtype RESULTSLIST is CAIS.LIST LTILTIES.LIST TYPE;
subtype RESULTS STRIG is STRIN;
subtype PARAMETERLIST is CAIS.LIST UTILITIES.LIST -TYPE;

ROOT -PROCESS: constant NAME STRING : cuLRREiJOW .0;
CURRENT INPUT: Constant NAME STRING -=*CURRENT INPUT;
CURRENTr OUTPUT: constant NAME STRING : CURRENT OUTPUT ;
CURRENT ERROR: constant NAME STRING : CURRENT ERR;

end PROCESS-DEFINITIONS;

package PROCESS -CONTROL in
use NODE DEFINITIONS;
Use LISTUTILITIES;
use PROCESS-DEFINITIONS;

procedure SPAWN PROCESS
(NODE: in out NODE TYPE;

FILE NODE: NODE TYPE;
INPUTr PARAmETrns: PARAMETER LIST := EMPTY LIST;
KEY: RELATIONSHIIP KEY := LATEST KEY;
RELATION: RELATIONNAME := DEFAULT -RELATION;
ACCESS-CONTROL. LIST TYPE EMPTY -LIST;
LEVEL: LIST TYPE =EM PTY -LIST;
ATTRIBUTES: LIST-TYPE

232



PROPOSED %IL-STD-CAIS

31 JANUARY 198-1

EMPTY LIST;

INPUT FILE: NAME STRING CURRENTINPUT;
OUPTf FILE: NAME STRING : CURRENTOUTPUT;
ERROR FILE: NAME STRING := CURRENT ERROR;

ENVIRONMENT NODE: NAME STRING :z CURRENTMODE);
procedure AWAIT PROCESS COMPLETION

(NODE: NODETYPE;
TIME LIMIT: DURATION := DURATION'LAST);

procedure AWAIT PROCESS COMPLETION
(NODE: MODE TYPE;
RESULTS RETURN: in Out RESULTS LIST;
STATUS: out PROCESS STATUS;
TIMELIMIT: DURATION :% DURATION'LAST);

procedure INVOKE -PROCESS
(NODE: in out NODETYPE;
FILE NODE: NODE TYPE;
RESULTS RETURN: In out RESULTS LIST;

STATUS: out PROCESS STATUS;
INPUT PARAMETERS: PARAMEi_ LIST;
KEY: RELATIONSHIP KEY := LATEST-KEY;
RELATION: RELATION MiN := DEFAULTRELATION;

ACCESSCONTROL: LISTTYPE : EMPTY-LIST;
LEVEL: LIST TYPE :E PTY LIST;
ATTRIBUTES: LIST TYPE : EMPTY LIST;
INPUT FILE: NAMESTRING : CURRENTINPUT.

OUTPUT FILE: NAMESTRING := CURRENT-OUTPUT;

ERROR FILE: NAME STRING := CURRENT ERROR;
ENVIRONMENT NODE: NAME STRING : CURRENT NODE;
TIME LIMIT: DURATION := DURATIONL;ST);

procedure CREATEJOB
(FILE NODE: NODE TYPE;
INPUT PARAMETERS: PARAMETER LIST := EMPTYLIST;
KEY: RELATIONSHIP KEY := LATEST KEY;
ACCESSCONTROL: LISTTYPE : EMPTY LIST;
LEVEL: LIST TYPE := EXPTY LIST;
ATTRIBUTES: LIST TYPE : EMPTY LIST;
INPUT FILE: NAME STRING := CURRENTINPUT;
OUTPUT FILE: NAME-STRING := CURRENTOUTPUT;

ERROR FILE: NAME-STRING : CURRENTERROR;

ENVIRONMEMT NODE: NAME STRING : CURRENTUSER);
procedure APPEND RESULTS (RESULTS: RESULTS STRING);
procedure WRITE RESULTS (RESULTS: RESULTS_ STRING);
procedure GET RESULTS (NODE: NODETYPE;

RESULTS: in out RESULTSLIST);
procedure GET-RESULTS (NODE: NODE-TYPE;

RESULTS: in out RESULTS LIST;
STATUS: Out PROCESS STATUS);

procedure GET-RESULTS (NAME: NAME-STRING;

RESULTS: in out RESULTS LIST;
STATUS: out PROCESS STATUS);

procedure GETRESULTS (NAME: NAMESTRING;
RESULTS: in out RESULTS LIST);

procedure GETPARAMETERS(PARAMETERs: in out PARAMETERLIST);
procedure ABORT PROCESS (NODE: NODE TYPE;

RESULTS: RESULTS STRING);

procedure ABORT PROCESS(mNE: NAME STRING;
RESULTS: RESUETS STRING);

procedure ABORT PROCESS(NODE: NODETYPE);
procedure ABORT PROCESS(NAME: NAMESTRING);
procedure SUSPENDPROCESS(NODE: NODE TYPE) ;
procedure SUSPEND_PROCESS(NAME: NMSTRING);
procedure RESUME PROCESS(NODE: NODE TYPE);
procedure RESUME PROCESS(NAME: NAKE STRING);
function STATUSOFPROCESS (NODE: NODE-TYPE)

233



PROPOSED \11L,- TD.( k1Q

31 JAM \ l'RY 10F5

return PROCESS STATUS;

function sTATus oF PROCESS (NAME: NAMESTRING)
return PROCESS STATUS;

function HANDLES OPEN (NODE: NODETYPE)
return NATURAL;

function HANDLES OPEW((ME: MANESTRING)
return NATURAL;

function 10 UNITS(NODE: NODE TYPE)
return NATURAL;

function I0 UNITS(NAME: NAME STRING)
return NATURAL;

function START TIME(NODE: NODE TYPE)
return TIME;

function START TIME (NAME: NANE STRING)
return TIME;

function FINISH TIME(NODE: NODE TYPE)
return TIME;

function FINISH TIME(NME: MANESTRING)
return TIME;

function MACHINE_TIME (NODE: NOWE-TYPE)
return DURATION;

function MACHINE _TIME (M AE: NAME-STRING)
return DURATION;

end PROCESSCONTROL;

package 10_DEFINITIONS is
use NODE-DEFINITIONS;

use LISTUTILITIES;

type FILE TYPE iN limited private;
type FILE NODE is

(IN F7ILE. INOUTFILE. OUT-FILE.
APPEND FILE);

type CARACTE ARRAY In array (CHARACTER) of BOOLEAN;
type FUNCTION KEY DESCRIPTOR (LENGTH: POSITIVE) in private;
type TAB ENUMERATION il (HORIZONTAL. VERTICAL);
type POSITION TYPE is

record
ROW: NATURAL;
COLUMN: NATURAL;

end record;
private

type FILE TYPE is (IMPLEMENTATIONDEFINED);
-- should be defined by Implementor
type FUMCTION KEY DESCRIPTOR(LINK: POSITIVE) in

record
null: -- defined by lmplementor
end record;

end IODEFINITIONB;

package ID CONTROL is
use I_ DEFINITIONS;
use NODE DEFINITIONS;
use LISTUTILITIES;

procedure OPEN FILE NODE
(FILE: - FILE TYPE;
NODE.: In out NODE TYPE;
INTENT: in INTENTION;
TIME LIMIT: in DURATION := NO-DELAY);

procedure SYNCHRONIZE(FILE: FILETYPE);

231



PHOP( )4 1) %111 -1Tt)- %I-

31 J%\I NFI 1004

procedure SET LOG(FILE: FILE TYPE;
LOG FILE: FILE TYPE);

procedure CLEAR LOG(FILE: FILE -TYPE):
function LOGGiNG(FiLE: FILE TYPE)

return BOOLEAN;
function GET LOG(FILE: FILE TYPE)

return FILE TYPE;
function NUMBEROFELEMEWrS (FILE: FILETYPE)

return NATURAL;
procedure SET PROMPT (TERMINMAL: FILE-TYPE;

PROMPT: STRING);
function GET PROMPT(TERMINAL: FILE-TYPE)

return STRING.
function INTERCEPTED CHARACTERS (TERMINAL: FILE-TYPE)

return CHARACTER ARRAY:
procedure VIABLE FUNCTION KEYSI(TERMINAL: FILE-TYPE;

ENABLE: BOOLEAN).
function FUNCTION_-KEYS_-EXABLD(TERMINAL: FILE-TYPE)

return BOOLEAN;
procedure COUPLE (QUEUE BASE: NODE TYPE;

QUEUE KEY: RELATIONSHIPKEIY :=LATEST KEY;
QUEUE - ELATION: RELATION-NAKE := DEFAULT RELATION;
FILE N ODE: NODE TYPE;
FORM: LIST TYP := EMPTY-LIST;
ATTRIBUTTES: LIST TYPE;

-- lltetlonally no default
ACCESS CONTROL LIST TYPE :~EMPTY -LIST;
LEVEL: LIST TYPE :=EMPTY LIST);

procedure COUPLE(QuEUE_ NAME: NAME-STRING;'
FILE_-NODE: NODE TYPE;
FORM: LIST-TYPE :EMPTY LIST;
ATTRIBUTES: LIST TYPE;

ACCESS CONTROL: LIST-TYPE =EMPTY-LIST;

LEVEL: LISTTYPE :EMPTYLIST);
procedure COUPLEuUEBASE: NODE TYPE;

QUEUE-KEY: RELATIONSHIP KEY := LATEST-KEY;
QUEUE RELATION- RELATION-NAME := DEFAULT-RELATION;
FILE NAME: NAME-STRING;

FORM: LIST TYPE : W EPTY -LIST-

ATTRIBUTES: LIST TYP;
ACCESS CONTROL: LIST-TYPE : TY LIST;
LEVEL: LIST TYPE :=EMPTY LIST);

procedure COUPLE (QUEUE MANAE: NAME STRING;.
FILE NAME: NAME STRING;
FORM: LIST TYPE : PTY LIST;
ATTRIBUTES: LIST TYPE;
ACCESS-CONTROL: LIST-TYPE : P TY LIST;
LEVEL: LIST-TYPE :EMPITY-LIST);

end 10 CONTROL;

generic
type ELEMENTr TYPE is private;

package DIRECT Io is
use NODE DEFINITIONS
use LIST UTTILITIES;
use 10 DEFINITIONS;
subtype FILETYPE 18 CAISlIO -DEFINITIONS.FILE TYPE;
subtype FILEMODE is CAIS.IoD DINITIONS.FILEMODE;

type COUNT is range o .iNTEGER-LAsT;
subtype POSITIVECOUNT is COUNT range 1 com-rLAST;

235i



PROPOSED %111- TD-CAIS

31 JANUARY 1gs.5

-- File manlagement

procedure CREATE(FILE: In out FILE -TYPE;
BASE: NODE TYPE;
KEY: RELATIONSHIPKEY LATESTKEY;
RELATION: RELATIONNAME '-

DEFAULT RELATION.
NODE: FILE MODE zINOUT FILE.
FORM: LIST TYPE EMPTY LIST:
ATTRIBUTES: LIST TYPE :~EMPTY LIST;
ACCESS CONROL: LIST TYPE : TY LIST;
LEVEL: LIST TYPE : wTY7LIST);

procedure CREATE (FILE: in out FILE TYPE;
9NAME: NAME STRING;

MODE: FILE MODE :=INOUT FILE;
FORM: LIST TYPE EMPTY LIST.'
ATTRIBUTES: LISTTYPE EMTY LIST.
ACCE.SS CONTROL. LIST TYPE =EMPTY LIST.
LEVEL: LIST-TYPE =EMPTY-LIST);

procedure OPENCFILE: in Out FILE -TYPE:
MODE: NODETYPE.
MODE: FILE MODE);

procedure OPEN(FILE: In out FILE TYPE:
NAME: NAME STRING;
MODE: FILE-MODE);

procedure CLOSE(FILE: in out FILE -TYPE);
procedure DELETE(FILE: in out FILETYPE);
procedure RESET(FILE: in out FILE -TYPE;

MODE: FILE MODE);
procedure RESET(FILE: in out FILE TYPE);

function MODE(FILE: FILE TYPE) return FILE_MODE;
function NAME(FILE: FILE TYPE) return STRING;
function FORM(FILE: FILE-TYPE) return STrRING;

function IS OPEN(FILE: FILE TYPE) return BOOLEAN;
-- Input~ and outp~ut operations

procedure RE.AD(FILE: FILE-TYPE;
ITEM: out ELEMENT TYPE;
FROM: POSITIE COUNT);

procedure READ(FILE: FILE TYPE;
ITEM: out ELEMENT TYPE);

procedure VRITE(FILE: FILE -TYPE,
ITEM. EL.EMENT TYPE;
TO: POSITIVE COUNT);

procedure WRITE(FILE: FILE TYPE.
ITEM: E~NT TYPE);

procedure SET INDEM (FILE: FILE ,TYPE;
TO: POSITIVECOUT).

function INDEX(FILE: FILE TYPE) return POSITIVE COUJNT;
function SIZE(FILE: FILE YPE) return COUNT:

function END OF FILE(FrLE: FILE TYPE) return BOOLEAN.

end DIcrETO;

generic
type ELEMENTTYPE is private;

package sEquENTIAL 10 is

238



PROPOSED MIL-'TD-C AIS

31 J%\I ARN" ia8-

Use NODEDEFINITIONS;
Use LIST UTILITIES;

use IO DEFINITIONS;

subtype FILE TYPE is CAIS. IODEFINITIONS.FILE-TYPE;
subtype FILE-MODE is CAIS. IO DEFINITIONS.FILE-MODE;

-- File asnagement

procedure cREATE(FILE: in out FILETYPE;
BASE: NODE TYPE;

KEY: RELATIONSIIP_KEY := LATESTKEY;
RELATION: RELATION NAME := DEFAULT-RELATION.

MODE: FILEMODE : INOUT FILE;

FORM: LIST TYPE :EMPTY LIST;
ATTRIBUTES: LIST TYPE : EM&TY LIST;
ACCESS CONTROL: LIST TYPE : EMPTY LIST;
LEVEL: LIST TYPE EMPTY LIST);

procedure CREATE(FILE: in out FILETYPE;
NAME: NAME STRING;
MODE: FILE MODE : INOUT FILE;
FORM: LIST TYPE = EMPTYLIST;
ATTRIBUTES: LIST TYPE = EMPTY LIST;
ACCESS CONTROL: LIST TYPE : EMPTY LIST;
LEVEL: LIST TYPE := EMPTY LIST);

procedure OPEN(FILE: in Out FILE TYPE;
NODE: NODE TYPE;

MODE: FILE MODE);
procedure OPEN(FILE: in out FILE TYPE;

NAME: NAME STRING;

MODE: FILE-MODE );

procedure CLOSE(FILE: in out FILE TYPE);
procedure DELEE(FILE: in out FILE TYPE);
procedure RESET(FILE: in out FILE TYPE;

MODE: FILE MODE);

procedure RESET(FILE: In out FILETYPE);

function MODE(FILE: FILE TYPE) return FILE MODE;
function MAME(FILE: FILE TYPE) return STRING;

function FORM(FILE: FILE-TYPE) return STRING;

function IS OPEN(FILE: FILE TYPE) return BOOLEAN;

-- Input and output operations

procedure READ(FILE: FILE TYPE;

ITEM: out ELMT TYPE);
procedure VRITE(FILE: FILE TYPE;

IT : ELMNi TYPE);

function END OF FILE(FILE: FILE TYPE) return BOOLEAN;

end SEQUEwTIAL_10;

package TEXT zo is
use NODE DEFINITIONS;
use LIST UTILITIES;

use 1O DEFINITIONS;
subtype FILE TYPE is CAIS.10 DEFINITIONS.FILE TYPE;
subtype FILE-MODE is CAIS.IoDEFINITIONS.FILE MODE;

type COUNT is range o .. INwEm LAST;

237



PIROPOsED %1I-TD-(CAIS
31 JNI'.kRY I Q85

subtype POSITzvEcouwr is comw range i .. COUNT*LAST;

UNBOUNDED : constant COUNT : o; -- line sad pae length

subtype FIELD is INTEGER range 0 INTEGER'LAST;
subtype NUMBERaASE is INTEGER range 2 16;

type TYPESET i (LOWERCASE. UPPER_CASE);

-- File Management

procedure CREATE(FILE in out FILE TYPE;
BASE: NODE TYPE;
KEY: RELATIONSHIP KEY = LATEST KEY;
RELATION' RELATIONNAME := DEFAULT RELATION;
MODE: FILEMODE "= INOUT FILE;
FORM: LIST TYPE :EMTY LIST;
ATTRIBJTES: LISTTYPE : EMPTYLIST;
ACCESS CONTROL: LIST-TYPE EMPTYLIST;
LEVEL: LISTTYPE = EMPTYLIST);

procedure CREATE(FILE: in out FILE TYPE;
NAME: NAME STRING;

MODE: FILE MODE INOUT FILE;
FORM: LIST TYPE EMPTY LIST;

ATTRIBUTES: LIST TYPE EMPTY LIST;

ACCESS CONTROL: LISTTYPE : EMPTYLIST;
LEVEL: LIST-TYPE : EMPTYLIST);

procedure OPEN(FILE: in out FILE TYPE;
NODE: NODE TYPE;
MODE: FILE MODE);

procedure OPE(FILE: in out FILETYPE;
NAME: NAMESTRING;
MODE: FILEMODE);

procedure CLOSE(FILE: in out FILE TYPE);
procedure DELETE(FILE: in out FILETYPE);
procedure RESET(FILE: in out FILE TYPE;

MODE: FILE MODE);

procedure RESET(FILE: in out FILE7TYPE);

function MODE(FILE: FILE TYPE) return FILE MODE;
function AME(FILE: FILE TYPE) return STRING;
function FORM(FILE: FILE TYPE) return STRING;

function IS OPEN(FILE: FILE-TYPE) return BOOLEAN;

-- Control of default Input ad output file$

procedure SETINPUT(FIrE: FILE TYPE);
procedure SET OUTPUT(FILE: FILE TYPE);
procedure SETEJRoR(FILE: FILEJTYPE);

function STANDARD INPUT return FILL TYPE;
function STAmDARDOUTPUT return FILETYPE.
function STANDARDERROR return FILE-TYPE.

function CURRENT iNLPr return FILE TYPE;
function CURRENT OUTPUT return FILE TYPE;
function ENTERROR return FILE TYPE.

238



PROPOSED W1IISTD-C.-JS
31 JANUALBY 1985s

-Specification of live and pae length@

procedure SET LINE LENGTH (FILE: FILETYPE;
TO: COUNT);

procedure SETLINELENGTH (TO: COUNT);

procedure SET PAGE LENGTH (FILE: FILE-TYPE;
TO: COUNT);

procedure SET PAGE LENGTH(To: COUNT);

function LINE -LENGTH(FILE: FILE-TYPE) return COUNT;
function LINE-LENGTH return COUN;

function PAGE -LENGTH(FrIJ: FILE TYPE) return COUNT;
function PAGE LENGTH return COUNT;

-- Colun. Line and Page Control

procedure NEW LINE(FILS: FILE TYPE;
SPACING: POSITIVE COUNT :1);

procedure NEW LINE (SPACING: POSITIVE COUNT :1);

procedure SKIP LINE (FILE: FILE TYPE:
SPACING: POSITIVE COUNT :1);

procedure SKIP-LINE (SPACING: POSITIVE COUNT :=1);

function END OF LINE(FILE: FILETYPE) return BOOLEAN;
function END OF LINE return BlOOLEAN.

procedure NEW -PAGE(FILE: FILETYPE);
procedure NEW PAGE:

procedure SKIP_-PAGE(FILE: FILETYPE);
procedure SKIP-PAGE;

function END iJF -PAGE(FILE: FILETYPE) return BOOLEAN;
function END OF PAGE return BOOLEAN;

function END -OF -FILE(FILE: FILE-TYPE) return BOOLEAN;
function END OF FILE return BOOLEAN;

procedure SET -COL(FILz: FILE TYPE;
TO: POSITIV COUNT);

procedure SET COL (TO: POSITIVE COUNT);

procedure SET LINE(FILE: FILE TYPE;
TO: POSIIVE COUNT)

procedure SET LINE(TO: POSITIVE COUNT);

function COL(ILE: FILE TYPE) return POSITIVE-COUNT,
function COL return POSITIVE COUNT;

function LINE(FILE: FILE TYPE) return POSITIVE COUN;
function LINE return POSITIVECOUNT;

function PAGE(FILE: FILE -TYPE) return POSITIvE-COUNT;
function PAGE return POSITIVE COUNT;

-- Character Input-Output

procedure GET(FILE; FILE-TYPE;
ITEM: out CHARACTER);

239



PROPOSED \lIIL-,TD-CAPS

m 1AU 085 ~R.

procedure GET (ITEN: Out CHARACTER);

procedure PUT(FILE: FILE T'rPE: ITEM : CHARACTER);

procedure PVT(ITEM: CHARACTER);

-- strlng Input-Output

procedure GET(FILE: FILE TYPE; ITEM : out STRING);

procedure GET(ITEM: out STRING);

procedure PUT(FILE: FILE TYPE; ITEM STRING);

procedure PUT (ITEM: STRIiG);

procedure GET LINE(FILE: FILE TYPE.
ITEM: out STRING;

LAST: out NATURAL);

procedure GETLINE (ITEM: out STRING;

LAST: Out NATURAL);

procedure PUT LINE(FILE: FILE TYPE; ITEM: STRING);

procedure PUTLINE(ITEM: STRING);

-- generic package for Input-OutPut of Integer Types

generic
type NUN is range <>;

package INTEGER_I0 is

DEFAULT WIDTH: FIELD := NA'WIDTH;

DEFAULT BASE: NUMBER BASE := 10;

procedure GE(FILE: FILE_ TE.;
ITEM: out NUM;
WIDTH: FIELD := 0);

procedure GET(ITEN: out NUm;
WIDTH: FIELD :o 0);

pro, edure PUT (FILE: FILE_ TYPE;

ITEM: NmN
WIDTH: FIELD :m DEFAULT WIDTH:

BASE: NUJER BASE := DEFAULTBASE);

procedure PU (ITEM: UN;
WIDTH: FIELD := DEFAULT WIDTH;

BASE: NUNER BASE := DEFAULTBASE);

procedure GET (FROM: STRING;
ITEM: out NUM':

LAST: Out POSITIVE);

procedure PUT(TO: out STRING;

ITEM: NU ;
RASE: NUMB=_RBASE := DEFAULT-BASE);

end INTEGER_10;

-- generic pack4ge for Input-Output of Floating Point

-- Types

generic
type NU is digits e>;

package FLOAT IO is

DEFAULT FORE: FILD :: 2;

DEFAULT AFT: FIELD : NUW'DIGITS - 1;

210

Li .



PROPO! FD \I.'D

31 JAN( ARY JgR.s

DEFAULT -W: FIELD :=3;

procedure GET(FILE: FILE TYPME;
I'TE3I: out MUM;
WIDTH: FIELD :0);

procedure GET(ITEM: out NUM:
VIMT: FIELD 0);

procedure PUT(FILE: FILE -TYPE;
ITENd MUM.
FORE: FIELD =DEFAULT-FORE;
AFT: FIELD 2DEFAULT-AFT;

EXP FIELD 2DEFAULT EW0);
procedure PUT(ITEN: MUM;

FORE: FIELD DEFAULT-FORE;
AFT: FIELD :2DEFAULT-AFT;

Wv: FIELD :2DEFAULT EX');

procedure GET (FROM: STRING;
ITEM: out NUM:
LAST: out POSITIh'E);

procedure PUICT: out STRING;
ITEM: hum;
AFT: FIELD 2DEFAULT AFT;

EXP: FIELD :DEFAULT -W);

end FLoAT ID;

-generic package for Input.-Output of Fixed Point Types

generic
type mum is delta <>;

package FIXCEDID is

DEFAULT FORE: FIELD WM'UFORZ.
DEFAULT AFT: FIELD KWUIAFT;
DEFAULT EV: FIELD 20;

procedure GET (FILE: FILE TYPE.
ITm: out NUM;
WIDTH: FIELD :=0);

procedure GET(Tm: out NUm;
WIDTH FIELD :0):

procedure PUT(FILE: FILE -TYPE.
ITEM: NUN;
FORE: FIELD :DEFAULT FORE;
AFT: FIELD :~DEFAULT AFT;
EW: FIELD 2DEFAULT EX);

procedure PUT(ITEM: NUN.
FORE: FIELD 2DEFAULT FORE;.
AFT: FIELD 2DEFAULT AFT;
Ev: FIELD :2DEFAULT EX),

procedure GET(FRow: MTING;
ITEM: out WUN;
LAST: out POSITIVE);

procedure Pmr(T: out STRING;
IM: AN;

AFT: FIELD DEFAULT-AFT;
EX: FIELD DEFAULT EXP).

end FIXEI-O:



PROPOSED NIIL-. TI-( AlS

31 JANVARY 19M~

__ generic package for Input-Output of Enumeration Types

generic
type ENUM isn<

package ENUWERATION_10 In

DEFAULT WIDTH: FIELD := 0;
DEFAULT-SETTINMG: TYPE-SET :=UPPER-CASE;

procedure GET(FILE: FILE ITYPE; ITEM :out EN'JM);
procedure GETITE: out 1Mum) ;

procedure PUT(FILE: FILE TYPE;
ITEM: 1Mm;F
WIDTH: FIELD := DEFAULT WIDTH;
SET: TYPE-SET :=DEFAULT SETTING);

procedure PuT(ITm: Emm;
WIDTH: FIL := DEFAULT WIDTH;
SET: TYPE-SET : = DEFAULTS SM ING);

procedure GETmYom: STRING;
ITEM: out ENM;
LAST: out POSITIVE);

procedure PUTCTo: out STRING;
ITEM: ENM:
SET: TYPE-SET := DEFAULTSETTI1IG);

end ENU1ERATION ID;

end T~CF 10;

package SCROLL -TERMINAL is
use NODEDEFINITIONS.
use 10 DEFINITIONS;
use 10 CONTROL;
subtype FILE -TYPE is CAIS.IO DEFINITIONS.FILE TYPE;
subtype FUNCTION KEY DESCRIPTOR is

CAIS.1 IDDEFINITIONS.FUN#CTIONKEY DE-SCRIPTOR;
subtype POSITION TYPE is CAIS.IO -DEFTITIONS.POSITION TYPE;
subtype TAB EUMERATION is CAIS.IO DEFINITIONS.TABENUMATION;

procedure SET POSITTON(TERMIMAL: FILE TYPE;
POSITION: POSITION-TYPE);

procedure SET_-POSITION (POSITION: POSITIONTYPE);
function GET POSITION(TERMINAL: FILE-TYPE)

return POSITION TYPE;
function GET POSITION return POSITIONTYPE:
function TERMINALSIZECTERMINAL: FILE-TYPE)

return POSITION TYPE;
function TERNMA SIZE return POSITION-TYPE;
procedure SET TAB (TERMINA: FILE -TYPE;

KIND: TAB ENUMIERATION : HORIZONTAL);
procedure SET TAB(XIND: TAB -ENUMTION :xs HORIZONTAL);
procedure CLEAR TAB(TERMINAL: FILE ITYPE;

KIND: TAB ENUMERATION := HOAIZONTAL);
procedure CLEAR TAB(KIND: TAB -EwNUmnRTON := HORIZONTAL);
procedure TAB(TERIMIM: FILE-TYPE.

KIND: TAB-ENMERATION 0 HORIZONTAL;
COUN: POSITIVE 2z 1);

procedure TAB (KIND: TAB ENUMERATION := HORIZONTAL;
COUN. POSIlTIVE :z 1):

procedure BELL(TERMINAL: FILE-TYPE);
procedure DELL;
procedure PUT(TERMINAL: FILE TYPE.

ITEM: CHARACTER).

242



PROPO.Il) MIL";TD-C 0IS

31 JA N!I ARYN 198.,

pr, cedure PUyr(ITEN: CHARACTER);
pr, cedure PUT(TERMXNAL: FILE TYPE;

ITEM: STRING);
pr, cedure PUT(ITEM: STRING);
pr, cedure SF1 ECHO(rERMaINL: FILE TYPE;

TO: BOOLEA := TRUE);
pr-cedure SET ECHO(TO: DOOLEAN := TRUE);
funiction ECHO (TERMINAL: FILE TYPE)

return BOOLEAN;
function ECHO return DOOLEAN.;
function MAXIMUM FUNCTION -KEY (TERMINAL: FILE-TYPE)

return NATURAL;
fuYI!:ion MAXIMUMFUNCTION -KEY return NATURAL;
prr cedure GET(TERMINAL: FILE-TYPE;

ITEM: out CHARACTER;
KEYS: out FUNCTIONKEYDESCRIPTOR);

procedure GET (ITEM: out CHARACTER,;
KEYS: out FUNCTION -KEY -DESCRIPTOR);

procedure GET (TERMINAL: FILE TYPE;

ITEM: out STRING;
LAST: out NATURAL;
KEYS: out FUNCTIONKEYDESCRIPTOR);

prozedure GEr(iTEm: out STRING;
LAST: out NATURAL;

KEYS: out FUNCTIONKEY DESCRIPTOR);
function FUNCTIONK EY_-COUNWT (KEYS: FUNCTION KEY DESCRIPTOR)

return NATURAL;
prc cedure FUNcTION KEY (KEYS: FUNCTIONKEYDESCRIPTOR;

INDER: POSITIVE;-
KEY -IDENTIFIER: out POSITIVE;
POSITION: out NATURAL) ;

procedure FuNCTION KEY MAuI (TERMINAL: FILETYPE;
KEY_-ID ENT IFIER: POSITIVE;
NZY NAME: Out STRING;
LAST: Out POSITIVE);

precedure FUNCTrION KEY NAME(KEY IDEJITIFIER: POSITIVE;
KEY NAME: Out STRING;
LAST: Out POSITIVE);

procedure NEWLINECTERMINAL: FILE-TYPE;

COUNT: POSITIVE : )
procedure MEW LINE(COUW: POSITIVE := 1);
procedure NEW -PAGE (TERMINAL: FILE TYPE);
procedure NEWPAGE;

end SCROLL TEMINAL;

package PAGETERMINAL in
Use NODE DEFINITIONS;

use 10 DEFINITIONS;
Use 10 CONTROL;
subtype FILE TYPE is CAIS.IO -DEFIITIONS.FILE TYPE;
subtype FUNCTION KEY DESCRIPTOR is

CAIUS. 10 DEFINITIONS. FUNCTION KEY -DESCRIPTOR;
subtype POSITIONTYPE is

CAIS.I 10 DEFINITIONS.POSITION TYPE.
subtype TABENUMERATION is

wAs. 10 DEFINITIONS TAB ENUMERATION;

type SELECT ENUMERATION in
(FROM ACTIVE POS ITION TO END.

FROM START TO ACTIVE POSITION.
ALL POSITIONS);

type GRAPFHIC RENDITION ENUMERATION 10
(PR INARY7RENDITION. SOLD.

213



pROPO I D NtIL-STD-( kl-

11 JkN( \RN 198R

FArwr. UNDERSCORE.
SLOW BLIK. RAPIDBLINK.
REVERSE IMAGE):"

type GR'\PHICRENDITIONARRAY is array
(GR \HIC RENDITIONENLUFATION) Of OOLEAN;

DEFAUL.T RAFHICRENDITION: constant GRAPHIC-RENDITION ARRAY
(PRIMARY_RENDITION =>

TRUE,
BOLD .. REVERSE IMAGE =>

FALSE);

proced!'re SET_POSITION(TERMINAL: FILE TYPE;
POSITION: POSITION TYPE);

proced, re SET_POSITION(POSITION: POSITION_-TYPE);
functio't GET-POSITION

(TERMINAL: FILE TYPE) return POSITION_TYPE;
function GET POSITION return POSITiONTYPE;
functio i TERMINAL SIZE

(TERMINAL: FILE_TYPE) return POSITION-TYPE;
functio-i TERMINAL SIZE return POSITION-TYPE;
procedlire SETTAB

(TERMINAL: FILE-TYPE;
KIND: TABENUMERATION := HORIZONTAL);

proced-'re SET TAB
(KIND: TAB ENUMERATION HORIZONTAL);

proced, re CLEAR TAB
(TERMINAL: FILETYPE;
KIND: TAB-ENUMERATION := HORIZONTAL);

procedire CLEARTAB
(KIND: TAB ENUMERATION := HORIZONTAL);

proced re TAB
(TERMINAL: FILE TYPE;
KIND: TAB ENUMERATION := HORIZONTAL;
COUNT: POSITIVE := 1);

procedure TAB
(KIND: TAB ENUMERATION := HORIZONTAL;

COUNT: POSITIVE := 1);
procedi re BELL

(TERMINAL: FILETYPE);
proced, re BELL;
proced re P r(TERMIAL. FILE TYPE;

ITEM: CHARACTER);
procedure PUT(ITEM: CHARACTER) ;
procedure PUT(TERMI AL: FILE TYPE;

ITEM: STRING);
procedure PUT(ITEM: STRING).
procedure SETECHO(TERMIMAL: FILE TYPE:

TO: BOOLEAN := TRUE);
procedure SET_ ECHO(TO: BOOLEAN := TRUE);
function eCHO(TERMINL: FILE TYPE) return BOOLEAN;
function ECHO return BOOLEAN;
function AXINUM FUNCTION KEYS

(TERMINAL: FrLE TYPE) return NATURAL;
functioi MAxiMvu FuNcrION XKEYS return NATURAL;
proceditre GET(TERMINAL: FILE TYPE;

ITEM: out CHARACTER;

KEYS: out FUNCTIONKEYDESCRIPTOR);
procedtire GET(ITEM: out CHARACTER;

KEYS: out FUNCTION KEY DESCRIPTOR);
procedure GET (TERMINAL: FILE TYPE;

ITEM: out STRING;
LAST: Ot NATURAL;

KEYS: out FUNCTION KEY DESCRIPTOR);

214



PROPOED \tIL-TD-CAI-

31 JANUARY 19.$

CLOSE (ODE);

raise:
end NODE A] -RIBUTEITERATE;

procedure ..-H ATTRIBUTE ITERATE

(ITEPTOR- out ATTRIBUTE ITERATOR;
BASE NODE TYPE;
KEY: RELATIONSHIP KEY;

RELATION: RELATION NAE := DEFAULT RELATION;

PATTERN: ATTRIFTiE PArTERN := ' separate;

procedure 'ATH ATTRIBUTEIT

(ITE \TOR: out ATTRIBUTE_ITERATOR:
NAME: NAME STRING;
PATTERN: ATTRIBUTEPATERN = °

*

BASE: MODE-TYPE;

begin
OPEN (BASE. BASE PATH (NAME). (I => READ RELATIONSHIPS));
PATH AITRIBuE ITERATE

(ITERATOR. BASE. LASTKEY (NAME). LAST-RELATION (NAE). PATTERN);

CLOSE (BASE);
exception
when others >

CLOSE (BASE);
raise;

end PATHATTRIBUTE ITERATE;

function WORE(ITERATOR: ATTRITITERAToR)
return BOOLEAN

is
RESULT ! BOOLEAN;

begin
-- Should be defined by lplementor
return RESULT;

end mOE;

procedure GE-rENT(TERATOR: in out ATTRIs=_TERAT ;
ATTRIBUTE: Out ATTRIBUTE NAME;

VALUE; in out LIST TYPE)

i1B
begin

null: -- should be defined by llplelentor

end GET NixT;

end ATTRIBUTES;

separate (CAIS)
package body AcCEss coNTROL is

use NODE-DEFINITIONS;
use NODE MANAGEMENT;

procedure SETACCESSCONTROL (NODE: NODETYPE;
ROLE NODE: NODETYPE;

GRANT: GRANTrVALUE) is separate;

procedure SETACCESSCONTROL (NAME: NAME-STRING;

ROLE NAWE: NAME STRING;
sGRAT: GRANT VALUE)

MODE. ROLE NODE NODE TYPE;

begin
OPEN (NODE. NAME. (1 => CONTROL));

258



PR OPOS ED SIJ~~TD(. 

31 JAN1'AR'l 198.5

proced ure GET NODE ATTRIBUTE
,NODE: NODZ TYPE;
ATTRIBUTE: ATTRIBUTE NAME;
VALUE: In out LIST TYPE) i- separate;

proced ire GETNODE ATTRIBUTE
NAME: NAME STRING;
ATTRIBUTE: ATTRIWUTENJE;
VALUE: in Out LIST TYPE)

is
NODE : NODE-TYPE;
begin

OPEN (IODE. NAME. (I => READ AT1RIBUTES));
GET NC IE ATTRIBUTE (NODE, ATTIIBUTE. VALUE);
CLOiE NDE);

except on
when ,thers =>

CL SE (1NODE);
ra -e;

end GET- ]DE ATTRIgUTE;

proce, ire GET PATH ATTRIBTE
3ASE: NODE TYPE;
KEY: RELATIONSHIP KJEY;

RELATION: RELATION NAAME := DEFAULTRELATION;
ATTRIBUTE: ATTRIBUTE NME;
VALUE: in out LIST TYPE) is separate;

proced ,ire GETPATH ATTRIBUTE
'AAME: N 1E STRING;
ATTRIBUTE: ATTRIBUTE NAME;
VALUE: in Out LISTTYPE)

in
BASE NODE-TYPE;
begin
OPEN (IASE, BASE PATH (NAME), (I => READRELATIONSHIPS));

GET PI 1 ATTRIBUTE
(BI -E, LAST K-EY (NAME), LASTRELATION (NAME).

AT 'RIBUTE. VALUE);
CLOSE "BASE);

except' on
when others =>

CI SE (BASE);
rr tee;

end oE "~PATH ATTRIBUTE;

proced ire NODE ATTRIBUTE ITERATE

'ITERATOR: out ATRIBUTITERATOR;
NOVE: NODE TYPE;

PATTERN: A"TRIsmU PATTERN :: ) is separate;

proced,-e NODE ATTRIBUTE ITERATE
- -RAT.' out ATTRImr rTERATOR;

4E: NAXE STRING;
PATTERN: ATTRIBUTEPATTERN :f *.)

NODE : NODE TYPE;
begin

OPEN (rODE. RAE. (I => READ ATTRIBUTES));
NODE A,?RIJrTE ITERATE (ITERATOR, NODE. PATTERN).
CLOS E NODE);
except on

o when others m)

2.57



pROPO%.I k IL-RTr -1\I

procedure nELETE PATH ATTRIBJTE(BASE: NODE TYPE;
KEY: RELATIONSHIP_KEY;

RELATION: RELATION NAME := DEFAULT RELATION;
ATTRIBUTE: ATTRIBUTE_4AME) is separ-ate;

procedure -DELETEPATHAl"RIBuTE(NAmE: NAME STRING;

ATTRIBUTE: ATTRI=UTENAME)
is
BASE : NODETYPE;
begin
OPEN (BASE. BASE PATH (NAME). (I => WRITE RELATIONSHIPS)):
DELETE PATP ATTFRIBU'T'E

(MASE. LkST KEY (NAME). LAST_RELATION (NAME). ATTRIBUTE);
CLOSE (BASE);

exception
when othcrs =>

CLOSE (3ASE).
raise;

end DELETE- 'ATH ATTRIBUTE;

procedure -.ET NODE ATTRIBUTEcNODE: NODE TYPE;
ATTRIBUTE: ATTRIBUTENAME;

VALUE: LISTTYPE) is separate;

procedure ;ETNODEATTRIBUTE (NAME: NAME-STRING;
ATTRIBUTE: ATTRIBUTENAME;

VALUE: LISTTYPE)
is
NODE : NODrTYPE;

begin
OPEN (NODE NAME. (I => WRITE_ATTRIBUTES));
SET NODE -RIBUTE (NODE. ATTRIBUTE. VALUE);
CLOSE (NOab)

exception
when others =)

CLOSE (NODE);
raise;

end SET -O
r T _ATTRIBUTE;

procedure IET PATH ATTRIBUTE
(BASt NODE TYPE;
KEY RELATIONSHIP KEY;
RELATION: RELATIONNAME :2 DEFAULT-RELATION;
AT' rBUTE: ATTRIBUTE NAME;
VALUE: LIST-TYPE) is separate;

procedure SETPATHATTRIBUTE (NAME: NAMESTRING;
ATTRIBUTE: ATTRIBUTE NAME;
VALUE: LIST-TYPE)

Is
BASE : NODFTYPE;

begin
OPEN (BASE. BASE PATH (NAME). (1 =) WRITERELATIONSIPS));
SET PATH A. -RimTE

(BASE. L L'r KEY (NAME). LAST RELATION (NAME). ATTRIBUTE. VALUE);
CLOSE (BASF);

exception
when oth rs =>

CLOSE (3ASE);
raise;

end SET PATHATTRI3BTr;

258



PROPOSED Ni]L-TD-C.kS
31 JANUA".ARY 10R.5

use NODE MAXAGEMENT;

procedure CREATE-NODE _ATTRIBUTE
('ODE: NODE TYPE;
ATTRIBUTE: ATTRIBUTE NAME;
VALUE : LIST TYPE) in separate;

procedure CREATE NODE ATTRIBUTE
(NAME: MANE STRING;
ATTRIBUTE: ATTRIBUTE NAME;
VALUE: LISTTYPE)

is
NODE : NODE TYPE;

begin
OPEN (NODE. NAME. (I => APPENDATTRIBruEs));
CREATE NODE ATTRIBUTE (NODE. ATTRIBUTE. VALUE);
CLOSE (NODE ;

exception
when others >

CLCSE (NODE);
raise;

end CREATENODE ATTRIMBTE;

procedure CREATEPATHATTRIBUTE (BASE: NODE TYPE;
KEY: RELATI ONSHIP KEY;

RELATION: RELATION NAME := DEFAULT RELATION;
ATTRIBUTE: ATTRIB TE NAME;
VALUE: LISTTVPEY is separate;

proced'ire CREATE PATH ATTRIBUTE (NANE: NAME STRING;
ATTRIBUTE: ATTR IBUTE NAME.
VALUE: LISTTYPE)

is
BASE NODE TYPE;

begin
OPEN (TASE. BASE PATH (NAME). (1 => WRITEATTRIBTES));

CREATE PATH ATTrIWTE
(BA -E. LST KEY (NAME). LAST RELATION (NAME). ATTRIBUTE, VALUE).

CLOSE BASE);
except on
when others =>

CL SE (BABE);
r ise;

end CA. ATEPATHATTRIBUTE;

procedure DELETE_ NODE ATTRIBUTE (NODE: MODE-TYPE;
ATTRIBUTE: ATTRIBUTE- NME) is separate;

prcec ure DELETE NODEATTRIBUTE(RANE: NAME STRING;
ATTRIMUTE: ATTRIBUTE NAME)

in
NOK ODE TPE_1;

begin

OPEN (ODE. NAME, (1 => WRITEATTRIBUTES));

DELETE NODE ATTRIBUTE (NODE. ATTRIBUTE);
CLOSE NODE);

except 3n
when others =>

C? SE (NODE);
raise;

end DV -TEMODEATTRIBWT;

254



owl

PROPOSED XIIT-STD-C.4
31 J NNUAfY logs

procedure zTERT
(ITERATOR: out NODE ITERATON;
MAMIE: NAME STRING.KIND: NODE KID:
KEY : RELATIONSHIP KEY PA1TTE1 :R = *RELA7ON: REATIONMAJE PATTER

DEAULT- R9ATION.i PRIM&RY ONLY: BOOLEAN :- TRUE)

NODE : NODE TYPE
begin
OPEN (NODE. NAM. (1 => AD RELATIONSHIPS));ITERATE (ITERATOR. NODE. KIND, KEY, RELATION.

PRZIARY ONLY);
CLOSE (NODE).;

exception
when others =>

CLOSE (NODE);
raise;

end ITERATE;

function MORE (I7TEATOR: NODEITERATOR) return SOOLEAIIis

RESULT : BOOL ;
begin

-- ShOuld be defluis by Impleuentor
return RFU.T.

end MORE;

Procedure GET iExT
(ITERATOR: in out NODE ITERATOR;NET NODE: in out NODE-TYPE;
zyTr': INTENTION := (U => EXISTENCE);TiME LIMIT: DURATION : NODELAY)iS

begin
null; -- shald be defined by 'Upleventor

end GoTNwr:,,

procedure SET-cuRRENTNODE(NODE: NODE TYPE) is separate;
procedure SEr CURJENr NODE (NE: mANE STRING)

iNODE : NODETYPE;

begin
OPEN (NODE. NAJIE. (1 z> EXISTENCE));
SET CURRENT NODE (NODE);

exception

when others =>
CLOSE ( 'DE);
raise;

end sE Rc rr ? NoDE;

Procedure GET-CURRENT NODE
(NOE: In Out NODE IPE;INTENT: ZNTENTION := (1 2> EXISTENCE);TIME LIT: DURATION 2 NODELAY) is Separate:

end NODE MAJIAGr ENT;

separate (CAIS)
package body A 7rI3Ts is

Use NODE DEF NITIONS;

254



31 JA.Nl'R IgS."

procedure DELETE TREE (NAmE: NAME_STRING)
is

NODE : NODE TYPE;

begin
OPEN (NODE. MAKE. (EXCLUSrVE WRITE. READ RELATIONSHIPS));
DELETE TREE (NODE);

exception
when others =>

CLOSE (NODE);
raise;

end DELETE TREE;

procedure LINK(NODE: NODE TYPE;
NEWBASE: NODETYPE;
NEW KEY: RELATIONSHIP_KEY;
NEWRELATION: RELATIONNAME :=

DEFAULT-RELATION) to separate;

procedure LINKCNODE: NODE TYPE;
NNAME: iA _ESTRING)

NEW BASE : NODETYPE;

begin
OPEN (NEW BASE. BASE PATH (NEW NAME), (1 => APPENDRELATIONSHIPS));
LINK (NODE. NEW BASE. LAST KEY (NEW_NAME),

LAST RELATION (NEW AM));
CLOSE (NEW BASE);

exception
when others =>

CLOSE (NEWBASE):
raise;

end LINK;

procedure UmLINK (BASE: NODE TYPE;
KEY: RELATIONSHIP KEY;
RELATION: RELATION NAME :=

DEFAULT-RELATION) is separate;

procedure uLINK(AME: NAME STRING)
is

BASE : NODETYPE;
begin

OPEN (BASE. BASE PATH (NANE),
(I => WRITE RELATIONSHIPS));

UNLINK (BASE, LASTKtY (NAME). LAST-RELATION (M));
CLOSE (BASE);

exception
when others =>

CLOSE (BASE);
raise;

end unLIm;

procedure ITERATE
(ITERATOR: out NODE ITERATOR;
NODE: NODE TYPE;
KIND: NODE KIND;
KEY: RELATIONSHIPKEY PATTERN
RELATION: RELATION NAME PATTER.N :

DEFAULT RELATION;
PRIMARY ONLY: BOOLEAN :- TRUE) is separate;

253



PROPQ-rD .%fIL-STD-c

•1 J.ANl %R)' 19,

end COPY NODE;

procedure copy TRE (FROM: NODE TYPE;
TO BASE: NODE IYPE;
TOKEY: RELATIONSHIP KEY;
TOR.ELATION: REIATIONNA :=

D17AULT -RELATION) is separate;
procedure COpy TREE(FROM: NODE TYPE.

TO: NAi-sTRNo)

TO BASE : ]NODE TYPE:
beg'm

OPEN (TO-ASE, BASE PATH (TO) (1 = APPEND RELATIOSHIPS));
COPY_TREE

(FROM. TO BASE. LAST EY (To). LAST RELATION (To));CLOSE (TO BASE);
exception
when others =>

CLOSE (TO EASE)
raise;

end coPYTRFE;

procedure RENAME(W :: D TYE .
NEW BASE: NODE TYPE;
NfEW KE-Y: RELATIONSHIp KEY;NE RELATION: RELATION !A : =

DEFAULT REATION) is separate;
procedure RENAME (NODE: NODE TYPE;
is NEW-MEi: NAMI STRING)

M BASE : NODETYPE;
beginOPEN (NEW BASE BASE PATH (NE1 MAME) ( = APPEND REATONpE))

(UOE. NEW-BASE, LAST KEY (E NAME).
LAST REIATI ON (NEWMn ))

CLOSE (NEW BASE);
exception
when others =>

CLOSE (NEW . SE);
raise;

end REmNAE.

procedure DELT!-NODE (NODE: in out NODETYE-n) Is separate.
Procedure DEl-E7ETNoDO X : NM STRING)
is 

-NM TIGNova : NODETYpE;

beginOPEN (NODE. NAME, (EXCLUSWMZTE. REA RELATIONSPS));
OELETE NODE (NODE);

exception
when others :

CLOSE (NODE);
raise:

end DELETNoDE;

Procedure DEL _TRErE (NODE, in out NODE_TYPE) is separate;

252



PROPO1EA) klIl'TD-( ",1
31 JJNt kR) igom

return BOOLEAN'i
MODE : NODE TYPE;

RESULT : BOOLEAN;

begin
OPEN (NODE. BASE. KEY, RELATION. (1 ) EXISTENCE));

RESULT := IS OBTAINABLE (NODE);
CLOSE (NODE);
return RESULT;

exception
when others => return FALSE;

end isorAiA*LE;

function ISSAME(NODE1: NODE TYPE;
NODE2: NODETYPE) return BOOLEAN is separate;

function ISSAME(NAMEI: NAMESTRING;

MAME2: NAMESTRING) return BOOLEAN
is
NODEl. NODE2 : NODETYPE;
RESULT : BOOLEAN;

begin
OPEN (NODEI. MAMEl, (I => EXISTENCE));

begin
OPEN (NODE2. NAME2. (1 => EXISTENCE));

exception
when others =>

CLOSE (MODE);
raise;

end;

RESULT := IS SA(NODEI. NODE2);
CLOSE (NODE);
CLOSE (NODE2);

return RESULT;
end I ssAME;

procedure GET PARENT
(PARENT: in out NODE TYPE:
NODE: NODEi TYPE;
INTENT: IwTENTION (a => READ);
TIME-LIMIT: DURATION := NODELAY) im separate;

procedure COPYNODE
(FROM: NODE TYPE;

TO BAS : NODE TYPE;
TO KEY: RELATIONSHIP KEY;
TO-RELATION: RELATIONNAM := DEFAULT_RJELTION) is separate;

procedure COFYNODE (FROM: NODE TYPZ;

TO: NAMESTRING)
is
TO BASE : NODETYPE;
be-gin
OPEN (TO BASE. BASE-PATH (TO). (I =) APPENDRELATIONSHIPS));
COPY NODE

(FROM. TO BASE. LAST KEY (TO). LAST-RELATION (TO));
CLOSE (TO BASE);

exception
when others >

CLOSE (TO BASE);

raise;

251



i ~ ~~~~PROPO',ED II-,D<.

31 JAN1.\RY 19M

procedure CLOSE(NODE: in out NODETYPE) is separate;

procedure CHANGE xrNwrT
(NODE: in Out NODE TYPE;

INTENT: INTENTION;
TIME-LIMIT: DURATION := NO DELAY) is separate;

function ISOPEN(NODE: NODETYPE) return BOOLEAN

is
RESULT : BOOLEAN;

begin
-- should be deflned by Impleuentor
return RESULT;

end ISOPEN;

function iN-rT OF(NODE: NODE TYPE)

return INTENTION is separate:
function KIND(NODE: NODE TYPE) return NODE-KIND is separate;

function PRIMARY NAME (NODE: NODE TYPE)

return NAmE-sTRING is separate;

function PRIMARY KEY(NODE: NODE TYPE)

return REI.ATIONSHIP-KEY is separate;

function PRIMARY RELATION(NODE: NODE TYPE)
return RELATIONNAME is separate;

function PATH -EY(NODE: NODETYPE)
return RELATIONSHIPKEY s separate;

function PATH RELATION(NODE: NODE TYPE)
return RELATIONNAME is separate;

function BASE PATH(NAME: NAMESTRING)
return NAMESTRING in separate;

function LAST RELATION (NAME: NAMESTRING)

return RELATIONNAME is separate;

function LAST -_KEY(AME; NAMESTRING)
return RELATIONSHIP-KEY is separate;

function IS OBTAINABLE (NODE: NODE TYPE)

return BOOLEAN in separate;

function IS-OBTAINABLE (KNE: NAME STRING) return BOOLEAN
Is
NODE: NODE TYPE;
RESULT: BOOLEAN;

begin
OPEN (NODE. NAME. (1 => EXISTENCE));

RESULT := IS OBTAINABLE (NODE);
CLOSE (NODE);
return iSULT;

exception
when others => return FALSE;

end isUoDaINABmz;

function IS OBTAINABUE
(BASE: NODE TYPE;
KEY: RELATIONS-IIP KEY:
RELATION: RELATION NAME :2 DEFAULTRELATION)

250



?ROPO;ED %1d-UATD-C MS

31 JANU,"R' 18.5

Appendix C
CAIS Body

with CALENAX:

package body CAIS is

package body NODEMANAGEMENT is Separate;

package body ATYRIWJTES ms separate;

package body AccEss coNR is separate;

package body STRUCTURAL NODES is separate;

package body PROCES CONTROL is Separate;

package body DinC to in separate;

package body SEQUENTIAL i0 is separate;

package body TMCrro is separate;

package body I0 CONTaL is separate;

package body SCROLL TERMINAL is separate;

package body PAGE TERMINAL is separate;

package body FORM TERMINAL is separate;

package body AGNrICTAPE. is separate;

package body FILE_IM RT EXPORT ti separate;

package body LIST-UTILITIES iS separate;
end cAs;

with CALNAR;
separate (CAIS)

package body NODMANAGEmENT is
Use WOrE D.FINITIONS,
Use CALENDAR;

procedure OP.N(NODE: in out NODE TYPE;
NME: NAME STRING;
INTENT: INTEiTION : (1 z> READ)
TIME LIMrT: DURATION :z NO-DELAY)

begin
null; -- shold be deflded by lplementor

end oPEN:

procedure OPEN(NODE: in out NDE TYPE;
RASE: NODE TYPE;
KEY: RELATIONSHIP KEY;
RELATION: RELATION NAME := DEFAULT -RLATION;
INTENT: INTENTION = (I :> READ)

TINE LIMIT: DURATION = NO DELAY)

begin
null; -- 01o1ld be defia.4 by Impl.u.ntor

end OPEN;

219



PROPOSED %Il-lTD-C.US

31 JANUARY 198.5

HOST FILE NAME: STRING);
procedure ExPORT (NODE: NODE TYPE;

HOST_-FILENAME: STING);
procedure EXPORT(NAJIE: NAME TRING;

HS-FIENAME: STRING);

end FILE IMPORT Em'RT;

end cAis;

248



PROPOSED flL-STD-C S

31 JANUARY 198.5

use IODEFINITIONS;

type TAPE POSITION is
(BEGINNING OF TAPE. PHYSICAL END OF TAPE,
TAPE MARK, OTHER);

subtype VOLUME_STRING is STRING (1 6);
subtype FILESTRING is STRING (1 17);

subtype REEL _NAME is STRING;
subtype FILE TYPE is CAIS.IO DEFINITIONSFILETYPE;
subtype LABEL.STRING is STRING (I...so);

procedure mOUwT(TAPE DRIVE: FILE TYPE;

TAPE NAME: REEL NAME;
DENSITY: POSITIVE);

procedure LOADUNLABEL(TAPE DRIVE: FILE TYPE;
DENSITY: POSITIVE;
BLOCK SIZE: POSITIVE);

procedure INITIALIZE UNLABELEDTAPE DRIVE: FILE TYPE;

DENSITY: POSITIVE;
BLOCKSIZE: POSITIVE);

prccedure LOADLABELED (TAPE DRIVE: FILE-TYPE;
VOLUME IDENTIFIER: VOLUMESTRING;
DENSITY: POSITIVE;
BLOCK SIZE: POSITIVE);

procedure INITIALIZE-LABMM (DTAPE DRIVE: FILE TYPE;
VOLUME IDENTIFIER: VOLUME STRING;
DENSITY: POSITIVE;
BLOCK SIZE: POSITIVE;
ACCESSIBILITY: CHARACTER : ";

procedure UNLOA(TAPE DRIVE: FILE TYPE);
prrcedure DISMOUNT(TAPE DRIVE: FILETYPE);
function IS LOADED(TAPEDRIVE: FILETYPE)

return BOOLEAN;

function ISMOUNTED(TAPE DRIVE: FILE-TYPE)
return BOOLEAN;

function TAPE STATUS (TAPEDRIVE: FILE TYPE)

return TAPE POSITION;
procedure REWIND TAPE(TAPE DRIVE: FILE TYPE)
procedure SKIPITAPEMARKS (TAPEDRIVE: FILE-TYPE;

NUMBER: INTEGER :=I;
TAPE STATE: out TAPE POSITION);

procedure WRITETAPEMARK (TAPE DRIVE: FILETYPE;
NmBE: POSITIVE :=1;
TAPE STATE: Out TAPEPOSITION);

procedure VOLUMEHEADE (TAPE DRIVE: FILE TYPE;

VOLUME IDENTIFIER: VOLUME STRING;
ACCESSIBILITY: CHARACTER := ":

procedure FILEHEADER (TAPEDRIVE: FILE-TYPE;
FILE IDENTIFIER: FILE STRING;
EIrATION DATE: STRING :=- 993a;
ACCESSIBILITY: CHARACTER :

procedure END FILE LABEL(TAPE DRIVE: FILETYPE);
procedure READ LABEL(TAPEDRIVE: FILE-TYPE;

LABE: Out LABELSTRING);

end MAGNETIC TAPE;
package FILE_ IMPORT PORT IS

use NODE DEFINITIONS;

procedure IMPORT(NODE: NODE TYPE;

HOST FILE NAME: STRING);
procedure IMPORT(NAME: NAME-STRING;

247



PROPOSED I1ILSTD-C.AI
31 J kN' \R'Y 1981b

ALPtABETI CS);
type AREA VALUE is

(NO FILL. FILL WITH ZEROES,

FILLWITHSPACES);

type FORMTYPE (ROW: POSITIVE;
COLUMN: POSITIVE;
AREA-QUALIFIERREQUIRESSPACE: BOOLEAN) i@ private;

subtype FRIwrABLE oIARACTER in CHARACTER range

function MAxImum FUNCTION KEY
(TERMINAL: FILE TYPE) return NATURAL;

function MAXImmFUNCTION KEY return NATURAL;
procedure DEFINE QUALIFIED AREA

(FORM: in out FORM TYPE;
INTENSITY: AREA INTENSITY := NORMAL;
PROTECTION: AREA PROTECTION := PROTECTED;
INPUT: AREAINPuT = GRAPHIC CHARACTERS;
VALUE: AREAVALUE : NOFILL);

procedure REMOVE AREA QUALIFIER(FORM: in Out FORM TYPE);
procedure SETPOSITION(FORM: in out FORMTYPE;

POSITION: POSITION TYPE);
procedure NEXTQUALIFIED AREA(FORM: in out FORM TYPE;

COUNT: POSITIVE : 1);
procedure PUT(FORM: in out FORM TYPE;

ITEM: PRINTABLE CHARACTER);
procedure PUT(FORM: in out FORM TYPE;

ITEM: STRING);
procedure ERASE AREA(FORM: in out FORM TYPE);
procedure ERASE FORV(FORM- in out FORM TYPE) ;
procedure ACTIVATE(TERMINAL: FILE-TYPE;

FORM: in out FORMTYPE);
procedure GET(FORM: in out FORM TYPE;

ITEM: out PRINTABLE CHARACTER);
procedure GET(FORM: in out FORM TYPE;

ITEM: Out STRING);
function IS FORK UPDATED(FORM: FORM TYPE) return BOOLEAN;
function TER.MINATIONKEY(FORM: FORM-TYPE) return NATURAL;
function FORMSIZE(FORM: FORM TYPE) return POSITION TYPE;
function TERMINALSIZE(TERMINAL: FILE TYPE) return POSITIONTYPE;
function TERmINALSIZE return POSITION TYPE;
function AREA QUALIFIERREQUIRES SPACE

(FORM: FORMTYPE) return BOOLEAN;
function AREAQUALIFIER_REQUIRESSPACE

(TERMINAL: FILE-TYPE) return BOOLEAN;
function AREAQUALIFIERREQUIRESSPACE return BOOLEAN;

private

type FORM-TYPE (ROW: POSITIVe;
COLUMN: POSITIVE;
AREAQUALIFIERREQUIRESSPACE: BOOLEAN) is

record
null; -- should be defined by Implementor

end record;

end FORMTERMINAL;

package MAGNETIC TAPE is
Use NODEDEFINITIONS;



PROPOI-ED III-' TD-c \IS

31 JANt.AR) 1985

procedure GET(ITEm: out STRING;
LAST: out NATURAL;
KEYS: out FUNCTION KEY DESCRIPTOR);

function FUNCTION KEY COUNT(KEYS: FUNCTION KEYDESCRIPTOR)
return NATURAL;

prccedure FUNCTIoN KEYCKEYs: FUNCTIONKEY DESCRIPTOR;
INDEX: POSITIVE;
KEY IDENTIFIER: out POSITIVE;

POSITION: out NATURAL);
procedure FUNCTIONKEYNAME(TERMINAL: FILE TYPE;

KEY IDENTIFIER: POSITIVE;
KEY NAME: out STRING;
LAST: out POSITIVE);

procedure FuNcTIoN KEY NAME(KEYIDENTIFIER: POSITIVE;
KEY NAME: "nut STRING;

LAST: out POSITIVE);
procedure DELETE CHARACTER(TERNINAL: FILE TYPE;

COUNT: POSITIVE := 1);
procedure DELETE CHARACTER(COUNT: POSITIVE := 1);
procedure DELETELINE(TERMINAL: FILE TYPE;

COUNT: POSITIVE :=1);
procedure DELETE LINE(COUNT: POSITIVE := 1);

procedure ERASE CHARACTER(TERMINAL: FILETYPE;

COUNT: POSITIVE := 1);
prcedure ERASECHARACTER(COUNT: POSITIVE := 1);
procedure ERASEINDISPLAY (TERMINAL: FILE TYPE;

SELECTION: SELECTENUIMATION):
procedure ERASEINDISPLAY(SELECTION: SELECT ENUMERATION);
procedure ERASEINLINE (TERMINAL: FILE-TYPE;

SELECTION: SELECTENUMERATION);
procedure ERASE IN LINE(SELECTION: SELECTENUMERATION);
procedure INSERT SPACE(TERMINAL: FILE TYPE;

COUNT: POSITIVE := 1);
procedure INSERT SPACE(COUNT: POSITIVE := 1);
procedure INSERT LINE(TERMINAL: FILE TYPE;

COUNT: POSITIVE := 1);
procedure INSERT LINE(COUNT: POSITIVE := 1);
function GRAPHIC RENDITION SUPPORT

(TERMINAL: FILETYPE;
RENDITION: GRAPHICRENDITIONARRAY)

return SOOLEAN;
function GRAPHIC RENDITION SUPPORT

(RENDITION: GiAPHICRENDITiON-ARRAY)
return SOOLEAN;

procedure SELECT GRAPHIC RENDITION

(TERMINAL: FILE TYPE;
RENDITION: GRAPHIC RENDITION ARRAY

DEFAULT-GRAPHICRENDITION);
procedure SELECT GRAPHIC RENDITION

(RENDITION: GRAPHIC RENDITIONARRAY :=
DEFAULT-GRAPHIC RENDITION);

end PAGETERMINAL;

package FORM TEMIN is
use NODE DEFINITIONS;
use 1o DEFINITIONS;

use IO CONTROL;
subtype FILE_TYPE is CAIS.IO DEFINITIONS.FILE-TYPE;

type AREAINTENSITY is (NONE. NORMAL, HIGH);
type AREAPROTECTION is (UNPROTECTED. PROTECTED);
type AREA INPUT in

(GRAPHIC-CHARACTERS, NUMERICS.

215



PROPOSED iLS -cI

31 JANUARY IIPR5

OPEN ( OLE NODE. ROLENAME. (1 => EXISTENCE));
SET AC ESS CONTROL (NODE. ROLE-NODE. GRANT);
CLOSE NOD);
CLOSE ROLE MODE);

except o3n
when others =>

CL SE (NODE);
CL ,St (ROLE N4ODE);
ra'se;

end sr -ACCESSC0NTROL;

fuctf" I-G jr(OBJECr NODE: NODE-TYPE;
ACCESS RIGHT: NAME STRING)

return BOOLEAN is separate;

tunctit n IS GRANTED(OBJECT NAME: XAME STRING;
ACCESS -RIGHT: NAME-STRING)

return BOOL.EAN
is

OBJECTNODE :NODE TYPE;
RESULT :BOOLEANE;

begin
OPEN 'B.XECT NODE, 013JECT NAME!. Q => READ RELATIONSHIPS));
RESULI := IS GRANTED (OBJEcT NODE. ACCEss RImmT)
CLOSE 'OBJECi NODE);
returI RESULT;

except .oii
when others =>

CL.-SE (OBJECT-NODE);

end ISCLRME

procedure ADOPTm MRL ODE: MODE -TYPE.
ROLE KEY: RELTIONSHIP KEY := LATEST ICE) i8 separate,

procedure UKu.DCr'r(ROLE KEY: REATINSHIP-KEY) is separate,
end ACCESS CONTROL.

separate (WAS)
package body STRUCTURAL -NODES is

Use MODE-DEFINITIONS.,
use NODEMNAGEMENT;

procedure CREATE NODE
(NODE: int out NODE TYPE;
BASE: NODE TYPE;
KEY: RELATION4SIIP KEY := LATEST-KEY:
RELATION: RELATION NAME :z DEFAULT-RELATION;
ATTRIBUTES: LIST TYfE :2EXPTY LIST;
ACCESS CONTROL: LIST ITP EMPTY LIST;
LEVEL: LIsTry 7W mPTY LIST) is separate;

procedure CREATE NoDE
(NODE: in out NODE TYPE;
NAME: NAld STRING;
ATTRIBUTES: LIST-TYPE :~EXITY LIST;
ACCESS CONTROL: LIST TYPE: EMPTY LIST;
LEVEL: LrST TYPE EMPTY LIST)

is
BASE : NODE-TYPE;

begin
OPEN (BASE, BASE PATH (NAME).

(I ->' APPEND RELATINS1IPS));

2-59



PROPO-F.D NIIl-STD-(.\IR

31 JANUARY 198-

CREATE NODE
(NODE, BASE. LAST KEY (NAME). LAST RELATION (NAME),

ATTRIBUTES. ACCESSCONTROL. LEVEL);
CLOSE (BASE);

exception
when others =>

CLOSE (NODE);
CLOSE (BASE),
raise;

end CREATENODE;

procedure CREATENODE
(BASE: NODE_TYPE;

KEY: RELATIONSHIP KEY := LATEST KEY;

RELATION: RELATION NAME := DEFAULT RELATION;
ATIRIBUTES: LIST TYPE EMPTY LIST;
ACCESSCONTROL: LIST TYPE EmPTY LIST;

.LEVEL: LIST TYPE = EMPTYLIST)

NODE : NODE-TYPE;
begin

CREATE NODE

(NODE. KEY. RELATION. ATTRIBUTES. ACCESSCONTROL.

LEVEL) ;
CLOSE (NOD--);

end CREATE_0DE;

procedure CREATENODE
(NAME: NAME-STRING;
ATTRTBUTES: LIST-TYPE :-- EMPTYLIST:

ACCESS CONTROL: LIST TYPE :2 EMPTY LIST:
LEVEL: LIST TYPE : M YTLIST)

is
NODE : NODE TYPE;

begin
CREATE NODE

(NODE. NAME. AT"RIUfTES. ACCESS CONTROL. LEVEL);
CLOSE (NODE);

end CREATE NODE;
end s"mucrmL.NODES:

separate (CAS)
package body PROCESS CONTROL is

use NODEDEFINITIONS;

use PROCESS DEFINITIONS;
use NODEMANAGEMENT;

procedure sPAWvPcEss
(NODE: in out NODE TYPE;
FILE NODE: NODETYPE;
INPUT PARAMETERS: PARAMETER LIST := EMPTYLIST;

KEY: RELATIONSHIP KEY .= LATEST KEY;
RELATION: RELATION NAME := DEFAULTRELATION;

ACCESS CONTROL: LIST TYPE := EMPTY LIST;
LEVEL: LIST TYPE : EMPTY LIST;
ATTRIBUTES: LIST TYPE : EMPTY LIST;
INPUT FILE: NAME STRING : CUR ENT INPUT;
OUTPUT FILE: NAME STRING 2 CURRENT OUTPUT;

ERROR FILE: NAME STRING :z CURRENT ERROR:

ENVIRONMENTNODE: NAME-STRING :- CURRENTNODE) in separate;

procedure AAITPROCESSCOMPLETION
(NODE: NODE TYPE;

260



PROPOSED %f1L-STD-( .AJ

31 JAN'ARY 1985

TIME LIMIT: DURATION DURATION'LAST)
is separate;

procedure AWAITPROCESSCOMPLETION
(NODE: NODE TYPE;

RESULTS RETURNED: in out RESUTSLIST;
STATUS: out PROCESS STATUS;

TI
M
E LIMIT: DURATION := DURATION-LAST)Sis

begin
AWAIT PROCESS COMPLETION (NODE. TIME LIMIT)
GET RESULTS (NODE. RESULTSRETURNED).
STATUS :z STATUS OF PROCESS (NODE);
end AWAIT_PROCESS COMPLETION:

procedure IwvOKE_PRocESS
(NODE: in out NODE TYPE;
FILE NODE: NODE.TYPE;

RESULTS RETURNED: in out RESULTS LIST;
STATUS: out PROCESS STATUS;
INPUTPARAMETERS: PARAETERLIST;
KEY: RELATIONSHIP KEY LATEST KEY;
RELATION: RELJATION NAME := DEFAULT RELATION;
ACCESS CONTROL: LIST TYPE EMPTY LIST;
LEVEL: LIST TYPE : EMPTYLIST;
ATTRIBUTES: LISTTYPE = EMPTY-LIST;
INPUT FILE: NAME-STRING :: CURRENTINPUT;
OUTPUT FILE: NAME STRING := CURRENT OUTPUT;
ERROR FILE: NAME STRING : CURRENT ERROR;
ENVIRONMENT NODE: NAME STRING = CURRENTNODE;
TIME LIMIT: DURATION :=

DURATION'LAST) is separate;

procedure CREATE_ JOB
(FILEMODE: NODETYPE;
INPUT-PARAMETERS: PARAMETER LIST := EMPTYLIST;
KEY: RELATIONSHIP KEY := LATEST KEY;
ACCESSCONTROL: LIST-TYPE := EMPTY-LIST;
LEVEL: LIST TYPE := EMPTYLIST;
ATTRIBUTES: LIST TYPE : EMPTY LIST;
INPUT FILE: KNE STRING : CURRENT INPUT;
OUTPUT-FILE: NAME-STRING : CURRENTOUTPUT;
ERROR-FILE: NAME-STRING : CURRENTERROR.:
ENVIRONME T ODE: NAMESTRING : CURRENTUSER)

is separate:
procedure APPNDRESULTS(RESULTS: RESULTS STRING)

is separate;

procedure WRITE RESULTS(RESULTS: RESULTSSTRING) is separate:

procedure GETRESLTS (NODE: NODE-TYPE;

RESULTS: In out RESULTS LIST)
o separate;

procedure GET-RESULTS (NODE: NODE-TYPE;

RESULTS: In out RESULTS LIST;

STATUS: out PROCESSSTATUS)

Is
begin
GET RESULTS (MODE. RESULTS);
STATUS :z STATUSOFPROCESS (NODE):

end GET-RESULTS;

261



PROPO.-ED fIL-',.TD-C*Js

31 JANtARY I.,

procedure GET RESULTS(AjE: MAME STRING,
RESULTS: in out RESULTS LIST;

i, STATUS; out PROCESS STATnS)

MODE : NODETYPE;
begin
OPEN (NODE. NAME. (I => READ ATTRIBUTES))
GET RESULTS (NODE. RESULTS);-
STATJlS := STATUJS OF PROCESS (NODE);
CLOSE (NODE);

exception
when others =>

CLOSE (NODE);
raise:

end GET RESULTS;

procedure GETRESULTS(NAmE NAME STRING;
is RESULTS: in out RESULTS -IST)
NODE : NODETYPE,
begin
OPEN (NODE, NAME. (1 => READ ATTRIBUTES));
GET RESULTS (MODE, RESULTS);
CLDOiE (NODE);

exception
when others =

CLOSE (NODE);
raise;

end GETRsULTS;

procedure GETPARAMETERS
(PARAMETERS: in Out PARAMETER _LIST) is separate:

procedure ABORT PROCESS (NODE: NODE~TYPE.
RESULTS: RESULTS STRING) is separate;

procedure ABORT PROCESS(KAME: KAME STRING;
i RFSULTS: RESULTS SRItNG)

NODE : NODETYPE;
begin
OPEN (NODE, NAME. (READ RELATIONSHIPS. vRITECOWMNTS WRITE ATTRIBUTES))
ABORTPROCESS (NODE. RERLTS);
CLOSE (NODE);

exception
when others >

CLOSE (NODE);
raise;

end ABORT PR OCEs;

procedure ABORT PROC5S(NOE: NODE TYPE)
in
begin
ABORT PROCESS (NODE, 0ABORTEDw);

end A&RT PRcOES;

procedure ABORTPROCESS (NANE: NAJ STRING)in

NODE ; NODE-TYPE;
begin

282



PROPOSED M1L.-'TD-c.jCs

31 JA NlI4RY Ig.&5

OPEN (NODE. NAME. (READ_R-LATIONSHIPS. WRITE CONTENTS.,VRITEATTRIBTES));
ABORT PROCESS (NODE. "ABORTED*);
CLOSE (NODE);

exception
when others =

CLOSE (NODE);
raise;

end ABORT PRoCESS;

procedure SUSPENDPROCESS(NODE: NODE TmPE) in separate;

procedure SUSPENDPROCESS (AME: NAMESTRING)

in
NODE : NODE-TYPE;

begin
OPEN (NODE, NAME. (READ RELATIONSHIPS. RITECONTNTS, WRITE ATRIBU TES));

SUSPEND PROCESS (NODE);
CLOSE (NODE);

exception
when others =>

CLOSE (NODE):

raise;
end SmUSEm OmCss;

procedure REsumE PROCESS(NODE: NODE-TYPE) is separate;

procedure RESUMEPROCESS(KAME: NAMESTRING)
is

NODE : NODETYPE;
begin

OPEN (NODE, NAME, (READRELATIONSHIPS WRITECONTENTS,WRITEATTRIBUTES));
RESUME PROCESS (NODE);
CLOSE (NODE);

exception
when others =>

CLOSE (NODE);
raise;

end RESumEPROCESS;

fUnction STATUS OFPROCESS (NODE: NODE TYPE)
return PROCESSSTATUS is separate;

function STATUSOF PROCESS (NAME: NAME STRING)

return PROCESSSTATUS

NODE : NODE TYPE;
RESULT : PROCESS-STATUS;

begin
OPEN (NODE. NAME. (1 => READATTRIBUTES));
(RESULT := STATUSOFPROCESS (NODE);
CLOSE (NODE);

return RESULT;
exception
when others =>

CLOSE (NODE).
raise;

end STATUS OFPO--SS;

function HANDLESOPEN(NODE: NODETYPE) return NATURAL
is separate;

26:3



PROI'O1,D M IL-STD-(.AIS

31 J.ANIARY 198.5

function HANDLESOPEN(NUa: NAMESRING) return NATURAL
in

MODE : NODE TYPE;
RESULT NATURAL.

begin
OPEN (NODE. NAME. (1 => READ ATTRIBUTES));
RESULT := .NDLES OPEN (NODE);
CLOSE (NODE);
return RESULT;

exception
when othrrs =>

CLOSE (tODE);

raise;
end HANDLESOPEN;

function ICUNITS(NIDE: NODE TYPE) return NATURAL is separate;

function IO_UWITS(AME: NAME SMRING) return NATURAL

is
MODE : N)E TYPE;
RESULT NATURAL;

begin
OPEN (NODE. NAME. (I => READ ATTRIBMTEs));
RESULT := TO UNITS (NODE);
CLOSE (NODE);
return RESJLT;

exception
when others =>

CLOSE (NODE);

raise.
end I0 UNITS;

function START_-TIME(NODE: NODETYPE)
return TIME is separate;

function START TIME(NAME: NAME-SRING)
return TIME

NODE : NODE_TYPE;
RESULT : TIm;

begin
OPEN (NODE. NAME. (1 => READATTRIEJTES));
RESULT :- START TIME (NODE);
CLOSE (NODE);
return RESUT;

exception
when others --

CLOSE (NODE);
raise;

end START-TIME;

function FINISH TIME(NODE: NODE TYPE)

return TIME is separate;

function FINISH TIME(NAME: NAMESTRING)

return TIME

MODE : NODETYPE;

RESULT : TIME;
begin
OPEN (NODE. NAME. (I => READATTRI JTES));

264



PROPOSED NIL-STD-C %1S

31 JANUA.RY 198.5

RESULT :- FINISH TIME (NODE);
CLOSE (MODE);
return RESULT;

exception
when others =>

CLOSE (NODE);

raise;
end FINISH-TIME;

function MACINE TIME (NODE: NODE TYPE) return DURATION
is separate;

function MACHINE TIME (NAME: KAMESTRING) return DURATION

NODE NODE TYPE;
RESULT DURATION;

begin
OPEN (NODE. NAME, (I => READ ATTRIBUTES));

RESULT := MACHINE TIME (NODE);
CLOSE (NODE);
return RESULT;

exception
when others -

CLOSE (NODE);
raise;

end MACHINETIME;

end PROCESS CONTROL;

separate (CAIS)
package body 10_COWTROL is

use NODE DEFINITIONS;
use NODE MANAGEMENT;

use 10 DEFINITIONS;
use LISTUTILITIES;

procedure OPENJFILENODE (FILE: FILE-TYPE;
NODE: in out NODE TYPE;

INTENT: IiTENTION;
TIMELIMIT: DURATION := NO DELAY)

is separate;

procedure SYNCHRONIZE(FILE: FILE-TYPE) is separate;

procedure SETLOG(FILE: FILE TYPE;
LOGFILE: FILE-TYPE) is separate;

procedure CLEARLOG(FILE: FILETYPE) is separate;

function LOGGING (FILE: FILETYPE) return BOOLEAN is separate;

function GETLOG(FILE: FILETYPE) return FILETYPE is separate;

function RUMB'R OFELEMENTS(FILE: FILE-TYPE) return NATURAL
is

R.SU' : NATURAL;
begin

-- a' ild be defined by implementor;

returl RESULT;

end NV" -R OF ELEMENTS;

procedu-e SET-PROMPT(TERMINAL: FILE TYPE;
PROMPT: STRING) is separate;

285



PROPOSED %IIL-STD-('AIS

11 JANUARY IM

function GET PROMPT(TERNINAL.: FILE-TYPE) return STRING
is separate;

function INTERCEPTED CHARACTERS (TERMINAL: FILE -TYPE)
return CHARACTER-ARRAY is separate;

procedure ENABLEFUNCTION KEYS (TERMINAL: FILETYPE:
ENABLE: BOOLEAN)

is separate;

function FUNCTION KEYS ENABLED (TERMINAL: FILE TYPE)
return DOOLEAJI in separate:

procedure cOTJPLE(QUETJE -BASE: NODE -TYPE:
QLUUE KEY: RELATIONSHIP_-KEY := LATEST_KEY;

QUEUJE RELA71ON: RELATIONXAME := DEFAULT-RELATION;
FILE N ODE: NODE-TYPE;
FORM: LIST TYPE :EM PTY LIST;

ATTRIBUTES: LIST TYPE; -- tent1l&117l

-- not Gatlulted
ACCESS CONTROL: LIST TYPE :EMPTY LIST;
LEVEL: LISfT YPE :=EMPTY LIST) in separate;

procedure COUPLE (QUEUE NAME: NAME STRING:
FILE NODE: NODE TYPE;

FORM: LIST TYPE :~EMPT LIST:
ATTRIBUTES: LIST TYPE;'
ACCESS CONTROL: LIST TYPE :=EMPTY LIST;
LEVEL: LIST-TYPE MPTY LISTr)

in
BASE : NODE-TYPE;

begin
OPENE (BASE, BASE-PATH (QUEUE-NAME) . (1 => APPEND-RELATIONSHIPS));
COUPLE

(BASE. LAST KEY (QUUNAME).
LAST RELATION (QUEUE NAME). FILE NODE. FORM.
ATTRIBUTES, ACCESS CONTROL. LEVEL);

CLOSE (BASE);
exception
when others =>

CLOSE (BASE);
raise;

end COUPLE;

procedure COUPLE (QUE UE BASE: NODE -TYPE;
QUEUE KEY: RELATIONSHIP KEY :LATEST KEY;
QUEUE RELATION: RELATION NAME : = DEFAULT RELATION;
FILEN- AME: NAME STRING;
FORM: LIST -TYPE :2EMPTY LIST;
ATTRIBUTES! LIST-TYPE;
ACCESS CONTROL: LIST TYPE :sEMPTY LIST;
LEVEL: LIST TYPE :~EMPTY LIST)

is
FILE NODE : NODE TYPE;

begin-
OPEN (FILE NODE. FILENAMNE. (READ ATTRIWJTES. READ CONTENTS));
COUPLE

(QUEUE BASE. QUEUE KEY. QUEUE RELATI ON, FILE NODE.
FORM. ATTRIBUTES. ACCESS CONTROL. LEVEL.);

CLOSE (FILE NODE):

exception
when others =

CLOSE (FILE NODE);

raise;

206f



PROPOS ED lI-TD(I

31 JANI ARN 1985

end COUPLE;

procedure COUPLE(QUEUE -NAME: NAME STRING;
FILE NAME: RNMESTRING;
FORM: LIST -TYPE EMPTY LIST;
ATTRIUTES: LIST TYPE;
ACCESS CONTROL: LIST TYPE EMPTY LIST;
LEVEL: LIST-TYPE :2EMPTY-LIST)

FILE NODE : NODE TYPE;
QUEUE-BASE N ODE-TYPE;

begin
OPEN (QUEUE BASE. BASE-PATH (QUEUE NAME). (I => APPENDRELATIONSHIPS));
OPEN (FILENODE. FILENAME. (READ ATTRIBUTES. READ CONTENTS));
COUPLE

(QUEUE BASE. LAST KEY (QUEUE KNE).
LASTRELATION (QUEUE NAME) , FILE NODE. FORM.
ATTRIBUTES. ACCESS CONTROL. LEVEL);

CLOSE (QUEUE-BASE);
CLOSE (FILE NODE);

exception
when others

CLOSE (QUEUEBASE);
CLOSE (FILE-NODE):

raise;
end COUPLE;

end ID CONTROL;

separate (CAIS)
package body DIRECT 10 is i

use NODE DEFINITIONS;
use 10 DEFINITIONS;
use NODE-MANAGEMENT;

-- File management

procedure CEATE(FILE: in out FILE TYPE;
BASE: NODE TYPE;
KEY: RELATIONSHIP KEY :LATEST KEY:
RELATION: RELATION NAME := DEFAULT RELATION;
MODE: FILE MODE : INOUT FILE;-
FORM: LIST TYPE EmvTY LIST;
ATTRIBUTES: LIST TYPE :'EMTYLITST;
ACCESS -CONTROL: LIST TYPE :EMPTY LIST;
LEVEL: LIST-TYPE :=EMPT Y LIST)

begin
null, -- should be defined by Implementor

end CR'-ATE;

procedure CREATE(FILE: in out FILE TYPE;
NAME: NAME STRING;
MODE: FILEMODE :INOtJT FILE;
FORM: LISTTYPE :~EMPTY-LIST;
ATTRIBUTES: LIST-TYPE :sEMPTY-LIST;

ACCESS -CONTROL: LIST-TYPE :~EMPTY-LIST;

InLEVEL: LIST-TYPE :~EMPTY-LIST)

BASE NODE-TYPE;

267



PROPOSFED .MIL.-STD-"AI4S

31 JAN ARY N1M

begin
OPEN (BASE. BASE PATH (NAME). (1 => APPEND RELATIONSHIPS));
CREATE (FILE. BASE. LAST KEY (NAME).

LAST RELATION (NAME). MODE. FORM. AmI"JRTEs.
ACCESS CONTROL. LEVEL);

CLOSE (BASE);
exception
when others =

CLOSE (FILE);
CLOSE fBASE);
raise;

end CREATE;

procedure OPEN(FILE: In out FILE TYPE;

NODE: NODE TYPE;
NODE: FLE MODE)

is

begin
null; -- Should be defined by lopleuentor

end OPEN;

procedure OPEN(FILE: in out FILE TYPE;
NAME: NAMEi SRING;
NODE: FILENODE)

is

MODE : NODETYPE;
begin
case NODE is

when IN FILE => OPEN (NODE. NAME. (1 => READCONTENTS));

when OUT FILE => OPEN (NODE. NAME. (1 =W WRITE CONTENTS));
when INOUTFILE => OPEN (NODE. NAME. (READ CONTENTS. WRITECONTENTS));
when APPENDFILE =) Valse US-EOR;

end case;

OPEN (FILE, NODE. MODE);

CLOSE (NODE);
exception
when others =>

CLOSE (ILE);

CLOSE ("ODE);
raise;

end OPEN;

procedure CLOSE(WILE: in Out FILE TYPE)

is
begin

null; -- should be defined by lapleuentor
end CLOSE;

procedure DELETE(FILE: in out FILE TYPE)

is

begin
null; -- should be defined by lnplementor

end DELETE;

procedure FESET(FILE: in out FILE TYPE;
NODE: FILE MODE)

is
begin
null; -- should be defined by itplesentor

end RESET;

procedure RESET(FILE: in out FILE TYPE)

268



PROPOSED %1IL-STD-C'AIS

31 JANUARY 1g.,%

*15

begin
null; -- should be defined by Ilplementor

end REsEr;

function MODE(FILE: FILETYPE) return FILEMODE

is
RES T : FILEMODE;

begin
-- slould be defined by Inplementor
return RESULT;

end MODE;

function NAME(FILE- FILE-TYPE) return STRING is separate;

function FORM(FILE: FILE-TYPE) return STRING
is

RESL'.T : STRING( 1 .. 10);
begin

-- should be defined by Implesent or

return RESULT;
end FOTlM;

functicn ISOPEN(FILE: FILE-TYPE) return BOOLEAN
is

RESULT : BOdLEAN;
begin

-- sould be defined by implementor

return RESULT;
end ISopE;

-- Input and output operations

procedure READ(FILE: FILE-TYPE;

ITEM: out ELEMENTTYPE;
FROM: POSITIVECOUNT)

is
begin
null; -- should be defined by llplemenror

end Rm.E;

procedure READ(FILE: FILE TYPE;
ITEM: out ELMENTTYPE)

in
begin
null; -- should be defined by Implementor

end RE \D;

procec ure WRITE(FILE: FILETYPE;

ITEM: ELEMENT TYPE;
TO: POSITIVEOcmT)

begin
null; -- should be defined by 1uplementor

end w:TE;

procec' ure WRITE (FILE: FILETYPE;

ITEM: ELEMENT TYPE)
is
begin
null; -- should be defined by Implementor

end -RITE;

proceditre SET INDEX(FILE: FILE-TYPE;

260



IIROPO' ED %11IS-.TtD>-C %1,

, I JANL,\H 398.5

TO: POSITIVE COUNT) in separate;

function IN-)E3(FILE: FILE TYPE) return POSITIVE COUNT is separate;

function SIZE(FILE: FILE TYPE) return COUNT

is separate;

function END OFFILE(FILE: FILE-TYPE) return BOOLEAN
is

RESULT : BOOLEAN;
begin

-- stould be defined by implementor
return RESULT;

end END OF FILE:

end DIRECT IO;

separate (CAIS)
package body S UEriAL_io is

Use NODE DEFINITIONS;

use NODE MANAGEMENT;
use 10 DEFINITIONS:

-- File WoLJgelment

procedure CREATE(FILE: in out FILE rPE;
BA3E: NODE TYPE;
KEY: RELATIONSHIPKEY : LATEST_KEY;
RETATION: RELATION NAME := DEFAULT-RELATION;
NODE: FILE NODE := INOUT FILE;
FORM: LIST TYPE : 1TYLIST;
ATTRIBTES: LIST TYPE := EMPTY LIST;
ACCESS CONTROL: LIST TYPE : = EmPTYLIST:
LEVEL: LISTTYPE = EMPTYLIST)

begin
null; -- should be defined by lmplesentor

end CREATE;

procedure CREATE(FIT E: in out FILE TYPE;
kA"E: NAME STRING
MODE: FILE MODE : INOUT_FILE:
FOTld: LISTTYPE : EMPTY LIST;

ATTRIBTES: LIST TYPE :E= PTY LIST;
ACCESS-CONTROL: LISTTYPE : = EMPTYLIST;
LEVEL: LIST-TYPE : EMPTYLIST)

BASE : NODETYPS;
begin
OPEN (BASE., BASE PAT' (NAME), (I > APPENDRELATIONSHIPS));
CREATE (FILE. BAE. LAST KEY (NAME).

LAST RELATION (NAKE). NODE. FORM, ATTRIBUTES.
ACCEiS CONTROL. LEIVEL);

CLOSE (BASE):
exception
when others =>

CLOSE (FILE);
CLOSE (BASE).
raise;

end CREATE.

procedure OPEN(FILE. in out FILE-TYPE;

270



PROPOIED \1IL-',TD-C.'JS

31 JANUARN 1985

MODE: MODETYPE;
MODE: FILE-MODE)

begin
null; -- should be defined by implementor

end OPEN;

procedure OPEN(FILE: in out FILE TYPE;
NAME: NAmi STRING;
MODE: FILE-MODE)

is
NODE N ODE-TYPE

begin
Case MODE is
when INFILE => OPEN (NODE. NAME. (l => READ CONTENTS));
when ourFILE => OPEN (NODE. NAME. (1 => WRITE -CONTENTS));

when INOUTJ ILE => OPEN (NODE. NAME. (READ CONTENTS. WRITE CONTENTS));
when APPEND-FILE => OPEN (NODE. NAME. (1=> APPEND CONTENTS));

end case;

OPEN (FILE. NODE. NODE);
CLOSE (NODE);
exception
when others =>

CLOSE (FILE):
CLOSE (NODE);
raise;

end opEN;

procedure CLOSE(FILE: in out FILETYPE)

in
begin

null. -- should be defined by luplemntor
end CLOSE;

procedure OELETE(FILE: in out FILE TYPE)
is
begin

null;-- should be defined by implement~or
end DELETE;

procedure RESET(FILE: in out FILE TYPE;
MODE: FILE MODE)

is5
begin
null. -- should be defined by Implevent~or

end RESET;

procedure REsET(FiLE: in out FILE TYPE)
is
begin
null; -- should be defined by Implementor

end REPLACE;

function MODE(FILE: FILE-TYPE) return FILE-MODE
Is

RESULT : FILE MODE;
begin

-- should be defined by luplementor
return RESULT;

end MODE;

function NAME(FILE: FILE-TYPE) return STRING

"7



PROP0d.D \1EI-STD-C.

is
RESULT : .TRING(i. .10):

begin
-- should be defined by Implementor
return RESULT:

end NAME;

function FORM(FILE: FILE TYPE) return STRING
is

RESULT : STRINO~l. .10);
begin

-- should be defined by implementor
return RESULT;

end FORM;

function IS OPEN(FILE: FILETYPE) return BOOLEAN
in.

RESULT :BOOLEAN;
begin

-- should be defined by Implementor
return RESULT;

end IS-OPEN;

-- Input and output operations

procedure READ(FILE: FILE-TYPE;
ITEM: out ELEmEN_TYPE) in separate;

procedure VRITE(FILE: FILE-TYPE; ITEM :ELEMENT TYPE) is separate;

function ENDOFFILE (FILE: FILETYPE) return BOOLEAN
in

RESULT :BOOLEAN;
begin

-- should be defined by Implemelrtor
return RESULT;

end END OF FILE;
end SEqvENTrIAL_10;

separate (CAIS)
package body T~xr 10 is

use NODE DEFINITIONS;

Use NODEMANAGEMENT;
Use 10 DEFINITIONS;

-_ File Managemont

procedure CREATE(FILE: in out FILE TYPE;
BASE: NODE TYPE;
KEY: RELATIONSHIP-KEY =LATEST-KEY;

RELATION: RELATION KNE : DEFAULTRELATION;
NODE: FILE NODE : INOUT FILE;
FORM: LIST TYPE :EMPTY LIST.
ATTRIBUTES: LIST TYPE :EMPTYLIST.
ACCESS_-CONTROL. LIST-TYPE EX EPTY -LIST;
LEMEL LIST-TYPE EMPTY LIST)

is separae;

procedure CREATE(FILE: in out FILE -TYPE;
NAME. NAME STRING;
NODE. FILE MODE =INOUT FILE;
FORM: LIST TYPE EMPTYLIST;
ATTRIW.JTES LIST TYPE EMPTYLIST;



*D-4157-5:9 m4

UNCL*SSIF ED T iF/C 9/2 ME.



~36

1.25 ~I .
III1.6

MICROCOPY RESOLU11ON lt ST

NATI(,NAL Jqjik I, ANd~



PROPOSED NIIL-qTD-CA-%S

31 -1A~t ARY iaa73

ACCESS -CONTROL: LIST -TYPE :EMPTY_LIST;
LEVEL: LIST-TYPE :=EMPTY LIST)

BASE :NODE-TYPE;
begin -

OPEN (BASE. BASE PATH (NAME). (U => APPEND-RELATIONSHIPS));
CREATE (FILE. BASE, LAST KY (NAME).

LAST-RELATION (NAME). MODE.* FORM.* ATTRIBUTES.
ACCESS CONTROL.* LEVEL);

CLOSE (BASE);
exception
when others =>

CLOSE (FILE);
CLOSE (BASE);

raise;
end CREATE;

procedure OPEN(FILE: in Out FILETYPE;
NODE: NODE-TYPE;
MODE: FILEMODE) is separate;

procedure OPEN(FILE: in out FILE TYPE;
NAME: MAME STRING;
UODE: FILE-MODE)

in
NODE : NODE-TYPE;

begin
case MODE is

when IN-FILE => OPEN (NODE. MAKE. (I => READ CONTENT));

when OUT FILE => OPEN (NODE. NAME. (I => WRITE-CONTENTS));

when INOUJT FILE =>
OPEN (NODE. NAME. (READ CONTENTS. WRITE CONTENTS));

when APPEND-FILE =) OPEN (NODE. NAME. (1 => APPEND-CONTENTS));
end case;

OPEN (FILE. NODE. MODE);
CLOSE (NODE);

exception
when others =>

CLOSE (FILE);
CLOSE (NODE);

raise
end OPEN;

procedure CLOSE(FILE: in out FILE TYPE)
is
begin

null; -- should be defined by Implementor
end CLOSE;

procedure DELETE(FILE: in out FILE TYPE) is separate;

procedure RESET(FILE: in out FILE TYPE;
MODE: FILE MODE)

is
begin
null, -- shtould be defined by implementor

end RESET;

procedure RESET(FILE: in out FILE-TYPE)
is

273



PROPOSED %1ll,-TD-CAS

31 JANUARY 1984~

begin
null; -- should be df ined by isplementor

end RESET:

function MODE(VILE: FILETyP) return FiLzMODE IS separate;

function KMNE(FILE: FILE- TyPE) return STRING
Is

RESULT: STRING(l..10);
begin

--should be defined by Implementor
return RESULT;

end iAmE;

function FORM(FILE: FILE TYPE) return STRING is separate;

function ISOPEN (FILE: FILE TYPE) return BOOLEAN
is

RESULT : BOOLEAN;
begin

-- should be defined by lmpleentor
return RESULT;

end ISoPE;

-- Control of default input and output files

procedure sET IPUT (FILE: FILE-TYPE) is separate;

procedure sET OruT(FILE: FILE 1PE) is separate;

procedure SET-ERROR(FILE: FILE_TP) is separate;

function STAN DARDzxuT return FILETYPE is separate;

function summmARJ mOmTU return FILE 1W1P is separate;

function STANDARDE-RR return FILE-TYPE is separate;

function CURRENTINPUT return FILe_TYPz is separate;

function CURE r OUTPUT return FILE-_rPE is separate;

function CURREWT EM OR return FILEI"1! is separate;

-- Specification of line ad page lengths

procedure sET.LINE LENGT M(FILE: FIL_T l;
TO: COUNT)

in
beein
null. -- sfhould be defined by impleleaor
end SEJT I.N LtwTH.

procedure sT LINE LENGTMH(TO: COUM)
is
begin
null. -- should e deflned by Implementor
end STLIE -LENM;

procedure 5!T PAGELEXNGTH(M LZ: FILE TYPE;
M0 COUNT)

27'



PROPOSED NIL-STD-C AIS

31 JANLARY 198.5

i.
begin
null; -- Should be defined by implementor

end sETPAGE LENGTH;

procedure SET PAGE LENGTH (TO: COUNT)

begin
null; -- Should be defined by implesentor

end SETPAGELENGTH;

function LINE-LENGTH(FILE: FILE-TYPE) return CoUT

RESULT : COUNT;
begin

-- should be defined by Implementor
return LINE LENGTH;

end LINE-LENGTH;

function LINE LENGTH return COUNT
is

RESULT : COUNT;
begin

-- should be defined by Implementor

return RESULT;
end LINE LENGTH;

function PAGELENGTH (FILE: FILE-TYPE) return couwr

RESULT : COUNT;
begin
-- should be defined by implementor

return RESULT;
end PAGE LENGTH;

function PAGE LENGTH return couNT

is

RESULT : COUNT;
begin

-- should be defined by Implementor
return RESULT;

end PAGELENGTH;

-- Colum. Line and Page Control

procedure NEWLINE(FILE: FILE_ TYPE;

SPACING: POSITIVE COUNT := 1)

begin
null; -- slould be defined by implesentor

end NEVLINE;

procedure NWLINE (SPACING: POSITIVE_COUNT )

is
begin
null; -- Should be defined by isplementor

end REVLINE;

procedure SKIP LINE(FILE: FILE TYPE:
SPACING: POSITIVE COUNT : j)

begin

null; -- sfhould be defined by Implementor

275



PROPOSED ,IIL-STD-CAIS

31 JANUARY 1985

end SKIP LINE;

procedure SKIPLIE(SPACING: POSITIVECOUNT := 1)

is
begin
null; -- should be defined by lmplementor

end SKIPLINE:

function ENDOFLINE(FILE: FILETYPE) return BOOLEAN
is

RESULT : BOOLEAN;
begin
-- should be defined by Ispleaentor

return RESULT;
end ENDOFLINE;

function END OF LINE return BOOLEAN
is

RESULT : BOOLEAN;
begin
-- should be defined by implementor

return RESULT;
end ENDOFLINE;

procedure nEW PAGE (FILE: FILE TYPE)
is

begin
null; -- should be defined by Implementor

end NEv PAGE;

procedure NEwvPAGE
is
begin
null; -- Should be defined by implementor

end NEWPAGE;

procedure SKIPPAGE(FILE: FILE-TYPE)

is
begin
null; -- should be defined by implementor

end sKIP PAGE:

procedure SKIPPAGE
is
begin
null; -- Should be defined by Impleentaor

end SKIP-PAGE;

function ENDOFPAGE(FILE: FILE-TYPE) return BOOLEAN

is
RESULT : BOOLEAN;

begin
-- should be defined by lmpleentor

return RESULT;
end END OFPAGE;

function END OFPAGE return BOOLEAN
is

RESULT : BOOLEAN;
begin
-- should be defined by implementor

return RESULT;
end ENDOFPAGE;

270



PROPOSED MIL-STD-C.MS
31 JANUARY 1985

function ENDOFFILE(FILE: FILE TYPE) return BOOLEAN

RESULT : BOOLEAN;
begin
-- should be defined by implementor

return RESULT;

end END OF FILE;

function END OF FILE return BOOLEAN

RESULT : BOOLEAN;
begin

-- should be defined by lplementor
return ENDOFFILE;

end ENDOF FILE;

procedire SETCOL(FILE: FILE TYPE;
TO: POSITIVCOUNT)

in
begin
null; -- should be defined by luplimentor

end sET CoL;

procedure SETCOL(TO: POSITIVECOUNT)

is
begin
null; -- should be defined by iupleventor

end SETCOL;

procee ire SET LINE(FILE: FILE TYPE;
- TO: POSfIrvEcouN)

begin
null; -- should be defined by inplomentor

end SE- LINE;

proced ire SETLINE(TO: POSITIVE COUNT)
is
begin
null; - should be defined by Implementor

end St LINE;

functi, i COL(FILE: FILE TYPE) return POSITIvE COUNT

RE!.T : POSITIVE_COUNT;
begin
-- *hc Id be defined by implementor

rel irn RESULT;
end cc :

function COL return POSITIVE COUWT
Is

RESULT : POSITIVECOUNT;
begin
-- should be defined by Implementor

ret jrn RESULT;
end COL;

function LINE (FILE: FILE_"YPE) return POSITI'VECOUN

RESULT : POSITIVECOUNT;
begin

277



PROPO';:D NIIL-STD-( .%I,

31 J.\' \RY igs

-- should be defined by IMpieMentor

return RESULT;
end LINE;

function LINE return POSITIVECOUNT
Is

RESULT : POSITIVECOUNT;

begin
-- should be defined by impleuentor

return EESULT;

end LIKE;

function PAGE(FILE: FILE-TYPE) return POSITIVECOUNT
in

RESULT : POSITIVECOUNT;
begin

-- should be defined by impleentor
return RESULT:

end PAGE;

function PAGE return POSITIVECOUNT
is

RESULT : POSITIVE COUNT;
begin

-- Should be defined by tmplementor

return RESULT;
PAGE;

end PAGE;

-- Character Inpuc-oucpuc

procedure C-T(FILE: FILE TYPE;

ITEM: out CHRACTER)

begin
null; -- Wfcild be defined by Implementor

end GET;

procedure GET(ITE: Out COMAACTER)

begin
null; -- should be defined by lmplementor

end GET;

procedure PUT(FILE: FILE TYPE;
ITEM: CAiACTER)

begin
null; -- should be defined by lplementor

end PUT:

procedure PUT(ITEM: CHARACTr)

begin
null; -- should be defined by implementor

end PUT;

-- String Input-Output

procedure GET(FILE: FILE TYPE;

278



PROPO.;ED %iL-STD.c.4IS

31 J.NUN',kRy .198s

ITEM: out STRING)

begin
null. -- should be defined by jipIesentor

end cLr;

procedure GET(ITEM: out STRING)
in
begin
null; -- should be defined by implementor

end GET;

procedure PUT(FILE: FILE -TP;
ITEM: STRING)

is
begin
null: -- should be defined by loplementor

end PuT;
procedure Pvr(TTEn: STRING)
is
begin
null; -- should be defined by impleuentor

end PUT;

procedure GETLINE(FILE: FILE-TYPE;

ITEM: Out STRING;
LAST: out NATURAL)

Is
begin
.null; -- should be defined by Impleuentor
end GET_LINE;

procedure GETLINE(ITEM: out STRING;

LAST: out NATURAL)

begin
null; -- should be defined by implesentor

end GET-LINE;

procedure PUr LINE(FILE: FILE TYPE; ITEM: STRING)

i
begin
null; -- should be defined by Implementor

end PUT LINE;

procedure PUT LINE(ITEM: STRING)
is
begin
null. -- should be defined by Implementor

end P';r LINE;

-- generic package for Input-output of Integer Types

pack we body iNTEGU TO in separate;
-- gen-ic package for input-Output of Floating Point Types

package body LoT 0 Io separate:

-- gerric package for Input-Output of Fixed Point Types

pack,-e body PDxmro is separate;

-- generic package for Input-Output of Enumeration Type.

279



PROPO)ED ,%I1,STD-CAIS

31 JA.N'ARY 1084

package body ENUMERATION 10 is separate;

end TmET_1O;

separate (CAIS)
package body SCROLL TERMINAL in

Use NODE DUINITIONS;

use NODE MANAGEMENT;
Use IODiFINITIONS;
use Ter 10;

procedure SETPOSITION (TERMINAL: FILE-TYPE;
POSITION: POSITIONTYPE)

is
begin

null: -- should be defined by Implesentor
end SET-POSITION;

procedure SET-POSITION (POSITION: POSITIONTYPE)

is
begin
SETPOSITION (CUaMREWTOUTPUT. POSITION);

end SET POSITION;

function GET POSITION (TERMINAL: FILE-TYPE)
return POSITION TYPE

RESULT : POSITION TYPE;
begin

-- should be defined by Implsmsentor
return RESULT;

end GETPOSITION;

function GET POSITION return POSITION-TYPE

in
begin
return GET-POSITION (CURRENTOUTPUT);

end GET POSITION;

function TERMINAL SIZE(TERMINAL: FILE-TYPE)

return POSITION TYPE

in
RESULT : POSITION-TYPE;

begin
-- should be defined by isple.entor

return RESULT;
end TERmINAL SIZE;

function TERMINALSIZE return POSITION TYPE

begin
return TERMINAL SIZE (CURRENT OUTPUT);

end TERMINAL SIZE;

procedure SET TAB(TERMINAL: FILE TYPE.
KIND: TA ENUMERATION = HORIZONTAL)

begin
-- should be defined by Implesentor

null;

280



PROPOSEDT %,I1INTD-( '1

31 J\\'A H' 4411w

end SETTAB;

procedure SEr-TAB(KIND: TAB ENU1(ERATION = HORIZONTAL)
is
begin

S TAB (CURRENT OUTPUT. KIND);
end sETTAB;

procedure CLEARTAB (TERMINAL: FILE TYPE;
KIND: TABENUMERATTON HORIZONTAL)

is
begin

-- s~ould be defined by Implementor
null;

end cLEARTAB;

procedure CLEAR TAB(KIND: TAB ENUMERATION := HORIZONTAL)
is
begin

CLEAR TAB (CURRENTOTPT. KIND);
end cARTAB;

procedure TAB TERMINAL: FILE TYPE;
KIND: TAB ENU1RATION : HORIZONTAL;
COUNT: POSITIVE := 1)

is
begin

-- sould be defined by Implementor
null

end TAB;

procedure TAB(XIND: TAB ENUMERATION : HORIZONTAL;
COUNT: POSITIVE := 1)

is

begin
TAB (CURRENT OUTPUT. KIND, COUNT);

end TAB;

procedure BELL (TERMINAL: FILE-TYPE)
in
begin

-- should be defined by l-pleeat.or
null;

end BL,;

procedure DEU.

is
begin
BEL (CUJRENT-OUTPUIr);

end rELL;

procedure P JT(TERINAL: FILE-TYPE;
ITEM: CHARACTER)

is
begin

-- should be defined by Implementor
null;

end PUT;

procedure PUTCITEM: CHARACTER)



PROPOSED 1IL-STD-CAIS

:' JANUARY 1OL

begin
PUT (URRENT-OUTPUT. ITEM);

end PUTr;

procedure PUrT(TERINAL: FILE TYPE; ITEM SlttING)
in

begin
for INDE in ITEM-FIRST .. ITEM'LAST loop

PUT (TERMINAL. ITEM (INDE));

end loop;
end rUT;

procedure P T(ITEM: STRING)

is
begin

PUT (CtmgENTOUTPUr. ITEM);
end PUT;

procedure SETECHO (TERMINAL: FILETYPE;
TO: BOOLEAN := TRUE)

is
begin

-- should be defined by Implementor
null;

end SET-ECHO:

procedure SETECHO (TO: BOOLEAN := TRUE)
is
begin

SET ECHO (CRANT INPUT. TV)
end sET ECH ;

function ECHO (TERkLN: FILE-TYPE) return BOOLEAN
is separate;

function ECHO return BOOLEAN
is
begin
return ECY 'CURRENTINPUT);

end ECHO;

function mxyIwUM FUNCTION KEY(TERMINAL: FILE-TYPE)
return NATURAL

is
RESULT : NATURAL;

begin
-- Should be defined by implemeuntor
return RESULT;

end mAxIMUm FUNCT IM 0_Y;

function mXIMUMFUaIONKEY return NATURAL

begin
return MAXIMUM FUNCTION KEY (CURRENTINPUT);

end MAXIMUM FuCTIOmY;

procedure ET(TERNINAL: FILE-TYPE;
ITEM: Out CHARACTEUt;

282



PROPOSED %tIL-TD-C Ml
31 J.4NLJ N' 19MR

KEYS: Out FUNCTION KEYOESCRIPTOR)

begin
null; -- should be defined by Implement-or

end GET;

procedure GET(ITEE: out O{AACTER;
KEYS: out FUNCTION KEY DESCRIPTOR)

is
begin

GET (CLURRENT auTPuJT, ITEx, KEYS);
end GET;

procedure GEr(TERMINAL: FILE TYPE;
ITEM out STRING;
LAST: out NATURAL;
KEYS: out FUNCTIONKEY DESCRIPTOR)

is
begin
null ' -- Should be defined by laplementor

end GET.

procedure GET(ITEM: out STRING;

LAST: out NATURAL;
KEYS: out FUNCTION KEY DESCRIPTOR)

in
begin

GET (C t-RET IPIPUT. ITEM. LAST. KEYS);
end GET.

function FuNmToN KEYcoilT~x (KY: FUNCT1ON KEYDESCRIPTOR)
return NATURAL

is5
RESULT : NATURAL;

begin
-- should be defined by Implesentor
return RESULT;

end mcTion KEY COUNT;

procedure FUNCTION KEy(KEY: FUNCTION-KEY DESCRIPTOR;
INDEX: POSITIVE;
KEY IDENTIFIER: out POSITIVE;
POSITION: Out NATURAL)

is
begin

--should be defined by Isplement-or
null;

end FuNCTION-KEY;

procedure FUNCTIONKEY mAMECTzRixIAL: FILE TYPE;
KEY -IDENTIFIER: POSITIVE;
KEY MEE: out STRING;
LAST: out POSITIVE)

begin
-- SMou14 be defined by luplesentor
null.

end FuNCTION KEY-NAME;

procedure FtINCTION KEY NAME (KEY- IDENTIFIER: POSITIVE;
KEFY NAME: out STRING;
LAsT: out POSITIVE)

283



PROPO'-ED \111II,TD-C \IS

is

begin
FUNCTIONKEYNAME

(CURRENTINPUT. KEYIDENTIFIER. KEYNAME, LAST);

end FUNiONKEY-mAmE;

procedure NEWLINE(TERMINAL: FILE-TYPE;
COUNT: POSITIVE 1) is separate;

procedure NEWLINE(COUNr: POSITIVE := 1)
is
begin

NEW LINE (CURRENTOUTPUT. COUNT);

end M LINE;

procedure NEW PAGE (TERMINAL: FILETYPE) is separate;

procedure NEWPAGE
is

begin
NEW PAGE (CURRENTOTrrPUT) ;

end NEWPAGE;

end SCROLL TERMImAL;

separate (CAIS)
package body PAGE TERMINAL is

use NODE DEFINITIONS;

use NODE MANAGEMENT;

Use IDDEFINITIONS;
use TEXT IO;

procedure SETPOSITION (TERMINAL: FILETYPE;

POSITION: POSITIONTYPE)
is
begin

null; -- should be defined by Implementor

end SETPOSITION;

procedure SET-POSITION (POSITION: POSITION-TYPE)

in

begin
SET POSITION (CURRENT OUTPUT. POSITION):

end sETPOSITION;

function GETPOSITION (TERMINAL: FILE-TYPE)
return POSITION TYPE

is

RESULT : POSITIONTYPE;
begin

-- ebould be defined by Iplesentor
return RESULT;

end GET POSITION;

function GET POSITION return POSITION TYPE

is
begin

return GET POSITION (CURRENT OUTPUT);

end GET-POSITION;

.... a_ ... mm~mmmm m m L. m mm u284 '



PROPOSED MIL-STD-CAIS

31 JANUARY 1985

Appendix D
PACKAGE LISTING OF CAIS PROCEDURES AND

FUNCTIONS

This appendix lists the CAIS procedures and functions in the context of their assiciated packages.
This appendix Is Intended to provide a simple reference to the CAIS procedures and functions In

package order.

Operation Description and Interfaces

Package NODEMANAGEMENT

Manipulation of The following Interfaces are used for manipulating
node handles node handles and determining node handle status and

node handle Intent.
procedure OPEN
procedure CLOSE
procedure CHANGEINTENT
function IS-OPEN
function INTENTOF

Querying node The following Interfaces are used to determine the
kind and name kind of a node (file, process, or structuraJ) and

the primary name of a node.

function KIND
function PRIMARY NAME

Pathname queries The following interfaces allow queries about

pathnamcs. None of these interfaces perform
accesses to nodes; they perform pathname

manipulations at the syntactic level only.
function PRIMARY NAME
function PRIMARY KEY
function PRIMARY RELATION

function PATHKEY
function PATHRELATION
function BASE PATH

function LAST_ RELATION

function LAST _KEY

Node queries The following Interfaces allow queries about nodes.
function ISOBTAINABLE

function IS SAME
procedure GETPARENT

Node duplication The following interfaces are used to duplicate
Interfaces single nodis or trees of nodes spanned by

primary relationships.

procedure COPY_ NODE

procedure COPYTREE

29"



PRO,) I'<"L[) \1l.- TI[-( NI
-

function TEX_LENGTH (LIST: LISTTYPE;
NAMED: NAME STING)

return POSITIVE
is
RESULT: POSITIVE;
begin

-- should be defined by Implementor
return RESULT;
end TEcT LENGTH;
function TEXT-LENGTH(LIST: LIST TYPE;

NAMM: TOKENTYPE)
return POSITIVE

is
RESULT: POSITIVE;
begin

-- should be defined by luplementor
return RESULT;
end TEXT LENGTH;
package body IDENTIFIER ITEM is separate
package INTEGEITEM is separate
package FLOAT ITEM is separate
package STRING ITEM is separate

end LIST_UTILITIES;

297



PROPOEED MIL-TD-(Ai-

31 JA\I4R) 198%

POSITION: POSITIONCOUNT)
return ITEX KIND

RESULT: ITEMKIND;begin
-- should be defined by implementor

return RESULT;

end GE. ITEM KIND;
function GET_ITEM_KIND (LIST: LIST-TYPE,

KA: _AMESTRING)

return ITEM KIND

RESULT: rIE _KIND;
begin

-- should be defined by linplomntor
return RESULT;

end GET ITE KIND;
procedure MERGE (FRONT: LIST TYPE;

BACK: LIST TYPE;

RESULT: in out LIST_TYPE)
is separate;

function LENGTH(LIST: LIST-TYPE) return COUNT

is separate;
procedure ITEM NAME (LIST: LISTTYPE;

POSITION: POSITION_COUNT;
NAME: out TOKEN TYPE)

is separate;
function POSITIONBYNAME(LIST: LIST TYPE;

MED: NAMESTRING)
return POSITIONCOUNT

RESULT: POSITIONCOUWT;
begin

-- should be defined by Implementor

return RESULT:

end POSITION_BY_ 'AIME;
function POSITION_BYNAME(LIST: LIST TYPE;

NAMED: TOKEN-TYPE)
return POSITION COUNT

is

RESULT: POSITI9N_COUNT;

begin
-- should be defined by implementor
return RESULT;

end POSITION BY NAME;

function TEXT LENGTH(LIST: LIST-TYPE)

return NATURAL

in
RESULT: NATURAL;

begin
-- should be defined by implementor

return RESULT;
end TEXILENGTH;

function TE1 LENGTH (LIST: LIST-TYPE;
POSITION: POSITIONCOUNT)

return POSITIVE
is
RESULT: POSITIVE;

begin
-- should be defined by llplementor

return RESULT;

end TEXT LENGTH;

296



|3 J \\ AR - , __

return RESULT.
end sr-rmCT;

procedure SPLICE (LIST: In out LIST TYPE;
POSITION: POSITION COUNT;
SUB LIST: LIST_TEXT)is

RESULT: LISTTEXT(1.10);
begin

null; -- should be defined by Implementor
end SPLICE;

procedure SPLICE(LIST: in out LISTTYPE;
POSITION: POSITION COUNT;
SUB-LIST: LIST TYPE)

RESULT: LISTTEXT(1..10);
begin

null; -- Should be defined by lupieventor
end SPLICE;

procedure DELETE(LIST: in out LISTTYPE;
POSITION: POSITION-COUNT)is

RESPLT: LISTTEXT(0. t0);
begin
null; -- should be defined by Implementor

end DELETE;

procedure DELErE(LIST: in out LISTTYPE;
KAMM: NAME STRING)

RESULT: LIST TEXT(1., 10);
begin

null; -- should be defined by Implementor
end DELETE;
procedure DELETECLIST: in out LISTTYPE;

NANO TOKEN_TYPE)
is

RESULT: LISTTEXT(I..10).
begin

null; -- should be defined by lopletentor
end DE:rE.
function C-TLISTKIND(LIST: LIST TYPE)

return LIST KIND;
in
RESULT: LISTKIND;

begin
-- should be defined by lmplementor
return RESULT;

end GETLIS7_KIND;

function GETITEMKIND(LIST: LIST TYPE;

NAMED: TOKENTYPE)
return ITEmKIND

is
RESULT: ITEM-KIND;

begin
-- should be defined by loplementor
return RESULT;

end GET ITEM KIND;
function GET ITEMKIND (LIST: LIST-TYPE;

205



PROPOSED NIIL-STD-C.Ik
:11 JANIA.R) 19F-1

null; -- should be deflned by Implement.or
end EXTRACT;

procedure rmAc'r(LIST: LIST TYPE.
NAiE: TOKEN TYPE)
LIST_ITEM: out LIST TYPE);begin

null; -- Should be defined by aplerentor
end EXTRACT;
procedure REPLACMS(LIT: In Out LIST TYPE;

LIST ITEM: LIST TYPE;
POSITION: POSITIONCOUNT)begin

null; -- ebould be defined by implementor
end REPLACE;
procedure REPLACE(LIST: in out LISTTYPE;

LIST ITEM: LISTTYPE;
NAME: NAME_STRING)

begin
null; -- should be defined by laplementor

end REPLACE;
procedure REPLACE(LIST: in Out LIST TYPE;

LIST ITE: LIST TYPE;

bgnNAMED: TOKEN TYPE)

null; -- should be defined by implement-or
end REPLACE;
procedure INSERT(LIST: in out LIST TYPE;

LIST ITEM: LIST TYPE;
POSITION: COUNT)

begin
null; -- should be defined by loplementor

end INSERT;
procedure ISER (LIST; in out LIST TYPE;

LIST ITEM: LIST TYPE;
NAME: NAME STRING;
POSITION: CmUii)

begin
null; -- should be defined by Ipleuentor

end INSERT;
procedure INSERT(LIST: in out LIST TYPE;

LIST ITEM: LIST TYPE;
NAMED: TOKEN TYPE;
POSITION: COUNT)I begin

null; -- should be defined by luplemenor
end INSERT;
function POSITIONBY VALUE (LIST: LIST TYPE;

VALUE: LIST TYPE;
START-POSITION: POSITION COUNT

:= POSITION COUNT FIRST;
ENDPOsITION: POSITION COUNT• : = ~PO S I T I O N C O U N T " A T

return POSITIONCOUNT Is sep.rte;

function SET EXTRACT (LIST: LISTTYPE;
POSITION: POSITION COUNT;
LENGTH; POSITIVE := POSITIVE'LAST)

return LIST TEXT
is
RESULT: LIST TEXT(l..10);

begin
-- should be defined by loplementor

294



PROPOsEr )I (>CA~
31 JASUAF Io

procedure IMPORT (NODE: ODE_TYPE;
HOST FILE NAE: STRJvG) is Separate;procedure 'IMPORT (NAME: MAKE TRING;

is IHOST FILENAME: Sn" G)

NODE: NODE TYPE;
begin

OPEN(NODE.NAME, (1=> WRfT CONTENT5).
IMPORT (NODE. HOST FILEIMJm);
CLOSE (NODE)

exception
when others =>

CLOSE (NODE);
raise;

end IMPORT;procedure WCORT (NODE: NODE TYPE;
HOST FILE_NAM: VfRING) is separate;procedure EOORT(NAE. NAME STRING,

is HOST FILENAmE: STRING)

NODE: NODE TYPE;
begin

OPE (NODE.NAME, (1=>READ COwrNTS));
EORT (NODE, MOST FILE AME);
CLOSE (NODE);
exception

when others =
CLOSE(NODE);
raise;

end EXORT;
end FILE IMPORT_E3(ORT;

separate (CAIS)
package body LIST_UTILITIES is

USe NODE DEFINITIONS;
UMe MODE MANAGEMENT;

procedure COPY(TO LIST: out LIST TYPE;
FROM LIST- LISTTYPE) is separate;

function TO LIST(LIST STRING: STRING)
return LIST -TYPE is separate:function TO TEXT(LIST- ITEM: LZST TYPE)
return LIST- TXT

RESULT.: LIST TCT(1..10).
begin
-- should be deflned Dy Implementor
return RESULT;

end TOT"nT;
function ISEUAL(LISTI: LIST TYPE;

LI8T2: LIST TYPE)
return DOOLEAJ is se-parate;

procedure E)[TRACT(LIST: LIST TYPE;
POSITION: POSITION COUNT;

begin LIST ITEM: out LIST -TYPE);

null; -- Should be defloed by lUPlSUSIUvorend EXTnACT;
procedure iMr'ic'r(LzST: LIST TYPE;

NAM: MAWd -t'NG;

begin LISTJTEM: Out LIST-TYPE);

293



31 J \NtAR) 198.

end mEAeUALIFIERREQIRES SPACE;

end FORM TERMINA.;

separate (CAIS)
package body MAGNETICTAPE iS

use MODE_DEFINITIONS;

use NODE-MANAGEMENT;

procedure MOUNT (TAPE DRIVE: FILE TYPE;

TAPE NAME: REEL NAME;

DENSITY: POSITIVE) IS separate;
procedure LOADUNLABELED (TAPE DRIVE: FILE TYPE;

DENSITY: POSITIVE;

BLOCK SIZE: POSITIVE)
is separate;

procedure INITIALIZEUILABEL (TAPEDRIVE: FILETYPE;
DENSITY: POSITIVE;

BLOCK-SIZE: POSITIVE)
is separate;

procedure LDLABELED(TAPE DRIVE: FILE TYPE;

VO -LUE_IDENTIFIER: VOLUESTRING;
DENSITY: POSITIVE;

BLOCKSIZE: POSITIVE) is separate;
procedure INITIALIZE LABELED (TAPEDRIVE: FILE_TYPE;

VOLUME IDENTIFIER: VOLUME STRING;

DENSITY: POSITIVE;
BLOCK SIZE: POSITIVE;
ACCESSIBILITY: CHARACTER :=" ')

iS separate;
procedure UNLOA(TAPE DRIVE: FILE TYPE) iS separate;
procedure DISMOUNT(TAPE DRIVE: FIE TYPE) is separate;
function IS LOADED(TAPE DRIVE: FILE TYPE)

return BOOLEAN is separate;
function IS MOUNTED(TAPE DRIVE: FILE TYPE)

return BOOLEAN is separate;
function TAPE STATUS (TAPE DRIVE: FILE TYPE)

return TAPEPOSITION is separate;
procedure REWIND-TAPE (TAPE DRIVE: FILE-TYPE) iS separate;
procedure SKIPTAPEMARKS(TAPE DRIVE: FILE TYPE;

MJm'BE: INTEGER :=1;

TAPE-STATE: out TAPE POSITION)

is separate;
procedure WRITE TAPE MARK (TAPE DRIVE: FILE_ TYPE;

NUMBER: POSITIVE :=1;
TAPE-STATE: out TAPE POSITION)

iS separate;
procedure VOLUMEHEADER (TAPE DRIVE: FILE TYPE;

VOLU_ IDENTIFIER: VOLUMESTRING;
ACCESSIBILITY: CHARACTER :=' ')

is separate;
procedure FILEHEADER (TAPE DRIVE: FILETYPE;

FILE IDENTIFIER: FILE STRING;

EXPIRATION DATE: STRING :=" 99366";

ACCESSIBILITY: CHARACTER :=" ') is separate;
procedure END FILE _LABEL(TAPE DRIVE: FILE_TYPE) is separate;
procedure REA LABEL (TAPE DRIVE: FILE-TYPE;

LAB: out LABEL-STRING) is separate;

end MAGMETICTAPE;

package FILE IMPORTEXPORT is
Use NODE-DEFINITIONS;

use NODEMANAGEMENT;

292



PROPOIED NIII1T1sT( d-

31 J. ,'UUAR) 191g.

ITEM : out PRIffTABLECHAJLICTER)

begin
-- ehould be defined by Implementor
null;

end GET;

procedure GET(FORM: in out FORM TYPE;
ITEM: Out STRING)

begin
for INDEX in r*E TFr .. rTEm-LAsT loop

GET (FORM. ITEM (INDEX)); -- Read a single character
end loop;

end GET;

function IS FORMUPDATED (FORM: FORM-TYPE) return BOOLEAN

is separate:

function TERMINATIONKEY(FORM: FORM-TYPE) return NATURAL

i separate;

function FORMSIZE(FORM: FORM TYPE) return POSITION TYPE
is separate;

function TERMINAL SIZE(TERMIKAL: VILE_TYPE)

return POSITIONTYPE
is
RESULT: POSITION-TYPE;

begin
-- should be defined by Implementor

return RESLT;
end TERMIALSIZ E;

function TERMImALSIZE return POSITION-TYPE

is
begin
return TERMINAL _SIZE (CURRENT_OUTPUT);

end TERMINAL SIZE;

function AREA _QUALIFIERREQUIRESSPACE (FORM FORM-TYPE)

return BOOLEAN
is

RESULT : BOOLEAN;
begin

-- should be defined by llplementor
return RESULT;

end AREAQUALIFIER REQUIRESSPACE;

function AREAQUALIFIERREIRES S PACE
(TERMINAL: FILE-TYPE) return BOOLEAN

is
RESULT : BOOLEAN;

begin
-- should be defined by lmplementor
return RESULT;

end AREA-QUALIFIERREQUIRESSPACE;

function AREAQUALIFIERREQUIRES SPACE return BOOLEAN
is
begin
return AREA QUALIFIERREQUIRESSPACE (CURRENTOUTPUT);

20l1



PROPOSED .1!!S TD-(.AJS

31 J..NtAR) 195

is
begin
SELECT- GRAPHIC RENDITION (CLURRENT_0tUPJT. RENDITION);

end SEECT_GRAPHICRENDITION;

end PAC- TERMINAL;

separate (CAIS)
package body FORM- TENINAL is

Use NODE DEFINITIONS;
Use NODE MANAGEMENT;
use D -DEFINITIONS;

use TE IO;

function MAXIMUMFUNCTION KEY(TERNINAL: FILETYPE)
return NATURAL iS separate;

function MAXIMM FUNCTIONKEY return NATURAL
in
begin
return MAXIMUM_FUNCTIONKEY (CURRENTImNUT);

end MAXimUI UFUNCTIONKEY:

procedure DEFINE-QUALIFIE AREA
(FORW: in out FORM TYPE;

INTENSITY: AREA_INTENSITY :: NORMAL;
PROTECTION: AREA PROTECTION : = PROTECTED;
INP17: AREAINPUT : GRApHTC CHARACTERS;
VALLt: AREA-VALUE : = NOF11 L) is separate;

procedure :-EmOVEAREAQUALIFIER (FORM: in Out FORMTYPE) is separate;

procedure :TETPOSITION(FoRM: in out FORMTYPE;
POSITION: POSITIONTYPE) is separate;

procedure NExT-QUALIFIEDAREA(FORM: In Out FORM TYPE;
COUNT: POSITIVE := 1) is separate;

procedure PUT(FORM: in out FORMTYPE;
ITEM: PRINTABLEOjARACTER)

begin
null; -- should be defined by 1aplmentor

end PT;

procedure PUT(FORM: in out FORMTYPE; ITEM : STRING)
is
begin
for INDEX in rTEN-FIRST .. ITENLAsT loop

PUT (FORM, ITEM (INDE0); -- Write a mingle character
end loop:

end PUT;

procedure ERASEAREA(PORm: in out FORM-TYPE) is separate;

procedure ERASE-FORM(FORM: in out FORM-TYPE) is separate:

procedure ACTIVATE (TERMINAL: FILE TYPE;
FORM: in out FORM-TYPE) is separate:

procedure GET(FORM: in out FORM-TYPE;

290



PRO)POSED klIL, TD-( %1-
31 JA.MN AR'Q j 8-5

procedure ERASE.IX -_DISPLAY
(TERMINAL: FILE TYPE;
SELECTION: SELECT ENUMERATION) is Separate;

procedure ERASE IN DISPLAY
(SELECTON :SELECTENMERATION)

is
begin
ERASEIN DISPLAY (CURRENTOUTPUT. SELECTION);

end ERASE IN DISPLAY;

procedure ERASEIN LINE(TERMINAL: FILE TYPE;

SELECTION: SELECTENumERATION) is separate;

procedure ERASEIN LINE (SELECTION: SELECTENUMERATION)

is
begin

ERASEINLIKE (CURRENTOUTPUT. SELECTION);
end ERASE INLINE;

procedure INSERT-SPACE (TERMINAL: FILETYPE;

COUNT: POSITIVE : = ) eparate;

procedure INSERT SPACE(COUNT: POSITIVE := 1)
is

begin
INSERT SPACE (CURRENTOUTPUT. COUNIT);

end INSERTSPACE;

procedure INSERT-LINE (TERMINAL: FILETYPE;

COUNT: POSITIVE 1) is Separate;

procedure INSERTLINE(CUUNT: POSITIVE :=I)
is
begin
INSERT LINE (CURRENT_OUTPUT. COUNT);

end INSERTLINE;

function GRAPHIC RENDITION SUPPORT
(TERMINAL: FILE TYPE;
RENDITION: GRAPHIC RENDITION ARRAY)
return BOOLEAN is Separate;

function GRAPHIC RENDITION SUPPORT
(RENDITION: GRAPHIC RENDITION ARRAY)

return BOOLEAN

begin
return GRAPHICRENDITIONSUPPORT

(CURRENT OUTPUT, RENDITION);
end GRAPHICRENDITIONSUPPORT;

procedure SELECT GRAPHIC RENDITION
(TERMINAL: FILE TYPE;

RENDITION: GRAPHIC RENDITION ARRAY
OFFAULTGRAPHICRENDITION) is separate;

procedure SELECT GRAPHIC RENDITION
(RENDITION: GRAPHIC RENDITION ARRAY

DEFAULTGRAPHIC RENDITION)

289



PRIOPt-)".: \1I+- ,TD-(AIkN

31 J.\Nt \RN 198,5

RESULT: NATURAL;begin
-- should be defined by Implsentor

return RESULT;
end FUNCTIO NKEY COUmT;

procedure FUNCTIONKEY(KEYS: FUNCTION KEY DESCRIPTOR;
INDEX: POSITIVE;
KEYIDENTIFIER: out POSITIVE;
POSITION: Out NATURAL)

begin
-- should be defined by Implomentor
null;

end FuNCTICNKrY;

procedure FUNCTION KEY NAME(TERMINAL: FILETYPE;
KEY IDENTIFIER: POSITIVE;

KEY-NAME: Out STRING;
LAST: out POSITIVE)

1s
begin

-- should be defined by isplementor
null;

end FucrION KEY mE;

procedure FUNCTIONKEYMAME(KEYIDENTIFIER: POSITIVE;
KEY NAME: Out STRING;
LAST: out POSITIVE)

is
begin
FUNCTION KEY NAME

(CURRENT INPUT. KEY IDENTIFIER. KEY NAME. LAST);
end FUNCTION KEY NAME;

procedure DELETE-CHARACTER(TERmINAL: FILE-TYPE;

COUNT: POSITIVE := 1) is separate;

procedure DELETECHARACTER(COUNT: POSITIVE := 1)
is
begin

DELETE CHARACTER (CURRENT OUTPUT. COUNT);
end DEiTCHARACTER;

procedure DELETELINE (TERMINAL: FILE TYPE;
COUNT: POSITIVE :. 1) is separate;

procedure DELETELINE(COUNT: POSITIVE := 1)

begin
DELETE LINE (CURRENTOUTPuT. COUNT);

end DELETE LINE.

procedure ERASECHAAACTER (TERMINAL: FILE-TYPE;

COUNT: POSITIVE := 1) is separate.

procedure ERASE _HARACTER(COUNT: POSITI :- 1)

is
begin

ERASE -CILARACTER (CURREN OTUT. CUN);
end ERASE CKARACTER;

288



PROPOrED MIL-STD( A-CS
31 J.ANtRY iS.s

return RESULT;
end ECHO;

function ECHO return BOOLEAN
In
begin
return ECHO (CURREwrTINPuT);

end ECHO;

function MAXIMU -FUNCTION KEY(TERMINAL: FILETYPE)
return NATURAL

is
RESULT : NATURAL;

begin
-- should be defined by Impleven?.or
return RESULT;

end mAxImumi FuJNCTZONKrY;

function MAXINUK FUNCTION KEY return NATURAL
in
begin
return MAXIMUM FUNCTION KEY (CURRENT INpUT);

end m Ximum FUNCTION-KEY;

procedure GET(TERmItAL: FILETYPE;
ITEM: Out CHARACTER;

KEYS: Out FUNCTION KEYDESCRIPTOR)
is
begin
null; -- should be defined by Implementor

end GET;

procedure GETrTnx: out CHARACTER;
KEYS: out FUNCTIONRKEY DESCRIPTOR)

begin
GET (CURRENTINPUT. ITEM. KEYS);

end GET;

procedure GET (TERMIMNL: FILE-TYPE;
ITEM: out STRING;
LAST: out NATURAL;
KEYS: out FUNCTIONKEY DESCRIPTOR)

is
begin
null; -- should be defined by Implementor

end GET;

procedure GET(ITEm: out STRING;
LAST: out NATURAL;
KEYS: in out FUNCTION KEY DESCRIPTOR)

in
begin
GET (CURRENT-INPUT. ITEM. LAST. KEYS);

end GET;

function FUNCTION KEY COUNT(KEYS: FUNCTIONKEY DESCRIPTOR)
return NATURAL

I2

287



PROPOSED N.IL-.STD-( AIS

31 JAN ARY Ig85

is
beginb - should be defined by Implementor

null:
end BELL;

procedure BELL
in

begin
ELL (CUREwrorPT ;

end BELL;

procedure PT(TEIWINAL: FILE TYPE;

ITEM: CU.RACTER)
is
begin

-- should be defined by iuplemenw.or
null;

end PUT;

procedure ?UT(ITEM: OIARACTER)
is
begin

PU (CURRENT-OUTPUT. ITEM).
end Pwr;

procedure PUT(TERMINAL: FILETYPE; ITEM STRING)
in
begin
for INDEX in ITEWFIR .. ITEM-LAST loop

PUT (TERMINAL, ITEM (INDEX));
end loop;

end PUT;

procedure PuT(ITEm: STRING)
in
begin

PUT (CURRENT OU'PUT. ITM);
end ur;

procedure sET-_Eo(TmImNAL FILE TYn;
TO: BOOLEAN := TRUE)

is
begin

-- should be defined by Implementor
null;

end sEr_ Coo;

procedure MEI0_ECHO(TO: BOOLEAN :s TRUE)
is

begin
SET EO4 (C'IRRENTIMUT. TO);

end S-ETr0 o;

function ECHO(TERNIXAL: FILE tYPE) return BOOLEAN
is

RESULT: SCILEAN;
begin

s-- hould be defined by Implementor

286



PROPO EOD EIITV-.

31 JANI+,RY i

function TMINAL SIZE(TEUINAL: FILEr MtY)

return PSITIONTYPE

RESULT : POSITION TYPE;begin

-- should be detIned by lmploaOt, or
return RESULT;

end TmRxmw1_StZv

function TERMINALSIZE return POSITION TYPE
is
begin
return TERMINAL SIZE (CURRENT OUTPUT);

end TEifAL SiZe;

procedure SE TAB(TERMuIAL: FILE TYPE;
KIND: TABEWIU10tATION : HORIZONTAL)

is
begin

-- should be deflned by implestntor
null;

end SET TAB:

procedure SET TAB(KIND: TAB -ENMERATION := HORIZONTAL)
is
begin

SET TAB (CURREWTOUTPVT. KIND);
end-SETTAB:

procedure CLEAR TAB(TERmIAL;: FILE TYPE;
KIND: TAB -EWNUATION HORIZONTAL)

is
begin

-- should Be defined by Implemenr.or
null;

end CLEAR-TAB;

procedure cLEAR TAB(KIWD: TAB EJEN ATIOK HORIZONTAL)
is
begin

CLEAR TAB (CURRJ6TOUJTPUT, KIMD);
end CLEAR TAB;

procedure TA (RmiNAL.: FILE TYPE:
KIND: TAI ENUMERATION ORIZONTAL;
COUNT: POEITIVE )

begin
-- should be deflned by lsploe*ttor
n u ll *

end TAB;

procedure TAB(KrND: TAB EJKMERATION : HORIZONTAL;
COUNT: POSITIVE ;= 1)

Is
begin

TAB (CLIRRENT OU!?U?. KIND. COUJNT).
end TA u;

procedure 9ELL(TERmzNAL. FILE TYPE)

285



PROPOSED MII-STD-C NIS

31 JANT.4)R 19M8

Alteration of The rollowing Interface Is used to alter the

relationships primary relationship of a node, thereby changing
Its unique primary name.

procedure RENAME

Deletion of primary The following two Interfaces allow the

relationships deletion of the primary relationship or a single
node or of the primary relationships of a node
and all the nodes that are contained In the tree

spanned by primary relationships emanating from

these nodes.

procedure DELETENODE
procedure DELETETREE

Creation and The following Interfaces allow the creation and

deletion of deletion of user-defloed secondary relationships.

secondary
relationships

procedure LINK

procedure UNLINK

Node Iterators The following Interfaces allow the Iteration

over nodes reachable from a given node via Its
emanating relationships.

procedure ITERATE

function MORE
procedure GET NEXT

Manipulation of the The following Interfaces allow changes to
CURRENT _NODE the relationship of the predefined relation
relationship CURRENTNODE emanating from the current process

node and open a node handle on the node that Is
the target of such a relationship-

procedure SET CURRENT_ NODE
procedure GET CURRENT NODE

Package ATTRIBUTES

Manipulation of The following Interfaces are used for defining
attributes and manipulating the attributes for nodes and

relationships.

procedure CREATE_ NODEATTRIBUTE
procedure CREATEPATHATTRIBUTE

procedure DELETE_ NODE ATTRIBUTE

procedure DELETEPATHATTRIBUTE
procedure SET_ NODE ATTRIBUTE

procedure SET PATH ATTRIBUTE

| m~ Imm,.g,, w wk w m mm m~mlmmmm A,,-299



PROPOSED MIL-STD-CAIS
at JANUARY 1985

procedure GETNODE ATTRIBUTE

procedure GETPATHATTRIBUTE
procedure NODEATTRIBUTE ITERATE
procedure PATHATTRIBUTE ITERATE
function MORE
procedure GETNEXT

Package ACCESSCONTROL

Manipulation of The following Interfaces are used to manipulate
access control acces control Information for nodes.

procedure SETACCESS CONTROL
function ISGRANTED
procedure ADOPT
procedure UNADOPT

Package STRUCTURALNODES

Creation of The following Interface Is used to create a
structural node structural node and to establish the primary

rmationship to It.

procedure CREATENODE

Package PROCESS-CONTROL

Spawning a This Interface creates a process node, Initiates
process the new process, and returns control to the calling

task upon node creation.

procedure SPAWNPROCESS

Awaiting process This Interface suspends the calling task and
termination waits for the process to terminate or abort.
or abortion

procedure AWAITPROCESSCOMPLETION

Invoking a This Interface Is functionally the same as
process performing a call to SPAWNPROCESS followed

by a call to AWAITPROCESS COMPLETION.

procedure INVOKE-PROCESS

Creating a This Interface creates a new root process node.
new job Control is returned to the calling task after

the new job Is created.

procedure CREATE JOB

Examination and These Interfaces provide the techniques for a
modification of process to examine and modify a results list.
results list

300



PROPOSED MMLSTD-cus1
31 JANUAR) 1995.

procedure APPEND_-RESULTS
procedure WRITE -RESULTS
procedure GET_RiESULTS

Determination These Interfaces are used to determine the value
of state of or the predefined attributes CURRENTSTATUS and
process and PARIAMETERS.
input parameters

fujnction STATUSOF'_PROCESS
procedure GETPARAMTERS

Modification These Interfaces change the process status of a
of the status process.

procedure ABORT_-PROCESS
procedure SUSPENiD_-PROCESS
procedure RESUME_ PROCESS

Handling 1/0 These Interfaces are used to query proces
and time nodes to determine the values of the predefined
queries attributies HANDLES OPEN, 10-UNITS. START _TME.

FINISH-TIME, and MACHINETIME.

function HAND)LES OPEN
function JO UNITS
function STARTTME
function FINISHTIME
function MACHINE TIME

Packages CAIS.DIRECTJO, CAIS.SEQUENTIAkL_10, CAIS.TEXT_10

Creating, opening, These Interfaces are used to create a file
and deleting and Its file node, to open a handle on a
secondary storage file, and to delete a f'lie. These may be
file used with direct access, sequential Access.

and text flies.

procedure CREATE
procedure OPEN
procedure DELETE

Package TEXT_1O

Reading and writing Th1% procedure Is used to read and wrie characters
characters from/to from/to a text file
text file

procedure RESET
procedure GET
procedure PUT

Setting predefined These Interfaces set the relationships or the
relations prdeflned relations CURRENT INPUT, CURR ENT_ OUTPUT.

301



PROPOSED MIL- STI-CAIS

31 JANUARY 1985

and CURRENTERROR.

procedure SET INPUT
procedure SET OUTPUT
procedure SET-ERROR

Opening and These Interfaces are used for returning an open flie
returning handle on the error file and for returning an open
handles on file handle on the current error output file.
error fies

function STANDARD-ERROR
function CURRENT-ERROR

Package 10_ CONTROL

Opening a This Interface obtains an open node handle from a
file node file handle.

procedure OPENFILENODE

Transmitting This Interface Is used to transmit data from an
data from internal ile to its associated external file.
Internal to
externaj file

procedure SYNCHRONIZE

Handling log These Interfaces are used for performing
files, prompts, operations on log files and for handling
and function prompt strings, character arrays, and
keys function keys.

procedure SETLOG
procedure CLEAR LOG
procedure ENABLEF UNCTION_ KEYS
function LOGGING
function GETLOG
function NUMBER OFELEMENTS
procedure SETPROMPT
function GETPROMPT
function INTERCEPTEDCHARACTERS
function FUNCTION_ KEYS ENABLED

Creating This interface creates a queue fIle and Its node.
coupled The Inltini contents of the queue file are the
queue same as those of the file to which It is coupled.

The queue file must be of kind MIMIC or COPY.

procedure COUPLE

Package SCROLL- TERMINAL, PAGE TERMINAL, FORMTERMINAL

Advancing the This procedure advances the active position to

302



PROPOSED MFL-STD-C.US

31 JANUARY 19M.~

active position the specified position.

procedure SETPOSITION

Package SCROLL_-TERMINAL, PAGETERMINAL

Querying terminal, These Interfaces ame used with scroll and page
controlling tab terminals to determine the active position,
stop, sounding determine terminal row and column size,
bell and writing manipulate tab stops, sound the bell, and
a character write a character.

function GETPOSITION
function TERM INAL_SIZE
procedure SETTAB
procedure CLEAR_-TAB
procedure TAB
procedure BELL
procedure PUT

Contolling echo. These Interfaces are used for echoing characters
querying function to associated output devices, determining the
keys and reading maximum allowable function key Identification
characters number,reading a character or characters, ad
function keys determing Information about function keys.

procedure SETECHO
function ECmsO
function MAXIMUM -FUNCTION_-KEY
procedure GET
function FUNCTIONKEYCOUNT
procedure FUNCTIONKEY
procedure FUNCTIONKEY- NAME

Package SCROLLTERMINAL

Line and page These Interfaces are used to control line and
advancement page advancerzwnt.

procedure NEW_-LINE
procedure NEW_-PAGE

Package PAGETERMINAL

Performing These Interfaces are used for deleting characters
deletions, erasures, characters and lines, for replacing characters
and insertions on entire displays and lines with spaces mud for
a page Inserting spaces and lines.

procedure DELETE_-CHARACTER
procedure DELETE LINE
procedure ERASEC HARACTER
procedure ERASE_ IN_ DISPLAY

30 3



PROPOSED MIL-STD-CAIS

31 JANUARY 1983

procedure ERASE_IN LINE
procedure INSERT SPACE
procedure INSERT-LINE

Graphic rendition These interfaces are used for determining If a
determination and graphic rendition in supported and for selecting
selection a particular graphic rendition.

function GRAPHIC RENDITION SUPPORT
procedure SELECT GRAPHIC RENDITION

Package FORMTERMINAL

Determing maximum This Interface returns the maximum value that
value from may be returned by function TERMINATIONKEY.
TERMINATIONKEY

function MAXIMUMFUNCTIONKEY

Opening form These Interfaces open a form to the specifled
and defining size, determine If the form is open, define
qualified area a qualified area, ad remove an area qualifier.

procedure DEFINE_ QUALIFIEDAREA
procedure REMOVE- AREA_ QUALIFIER

Qualified area These Interfaces advance the active position to
advancement, a subsequent qualified area. write to a form,
writing, and erase a qualified area, and erase the form.
erasing

procedure NEXT_ QUALIFIED AREA
procedure PUT
procedure ERASE AREA
procedure ERASE-FORM

Activating form, These interfaces activate the form on the
reading, and terminal, read data from the form, determine If
determining changes have been made to the form, determine the
Information termination key, determine the size of the form ad
about form terminal, and determine If the area quaiifler

requires space.

procedure ACTIVATE
procedure GET
function IS FORM UPDATED
function TERMINATION KEY
function FORM SIZE
function TERMINAL SIZE
function AREA_ QUALIFIER REQUIRES- SPACE

Package MAGNETIC TAPE

Mounting, status These are used to load unlabeled ad labeled
checking, and tapes, dismount tapes, determine If a tape Is

304



PROPOSED MrlSTD-( A1'l

31 JANUAR'Y 198.5

writing tape loaded or mounted and where it is positioned.

marks skip tape marks, and write a tape mark.

procedure MOUNT
procedure LOAD UNLABELED

procedure LOAD-LABELED
procedure UNLOAD
procedure DISMOUNT
function ISLOADED

function IS MOUNTED
function TAPE STATUS

procedure REWIND TAPE

procedure SKIP TAPE MARKS

procedure WRITE_TAPE MARK

Initialize and These interfaces are used to Initialize tapes, to

labeling tapes create a volume file header, end of file, read tape

label and end of volume label.

procedure INITIALIZE UNLABELED
procedure INITIALIZE LABELED
procedure VOLUME_HEADER
procedure FILEHEADER

procedure ENDFILELABEL

procedure READLABEL

Package FILEIMPORTEXPORT

Transferring These Interfaces are used to transfer files

files between between a CAIS implementation and the host

CAIS and host file system.

system
procedure IMPORT

procedure EXPORT

Package LISTUTILITIES

copying and These interfaces perform operations on list Items

converting lists that are lists. Operations performed copy
a list, convert the textual representation to an internal

list representation, and convert an internal representation

to a textual representation.

procedure COPY

procedure TOLIST
function TO TEXT

comparing, These list Interfaces determine the equillty of two

deleting, and lists, delete an Item from a list, determine the
querying lists kind of list, and kind of list item.

305



PROPOSED MIL-STD-CAJS
i 31S J .NLARdY IgS

function ISEQUAL

procedure DELETE
function GETLISTKIND
function GET LISTKIND
function GET ITEM_KIND

List splicing, These list Interfaces insert a sublist of items
merging, and Into a list, merge two lists and extract sublist
extracting of items from a list.

procedure SPLICE
procedure MERGE
function SET-EXTRACT

Determining These list Interfaces determine the length of a list,
list lengths length of a string representing text, the name
and names of a named Item and the position of a named Item.

function LENGTH
function TEXTLENGTH
procedure ITEMNAME
function POSITION_ BY NAME

Manipulation These list Interfaces extract an item from a
or list items list, replace an Item In a list, Insert an Item
In a list In a list, and search a list for a list value.

procedure EXTRACT
procedure REPLACE
procedure INSERT
function POSITIONBYVALUE

Generic Package IDENTIFIERITEM

Manipulation These Interfaces are used for manipulating list
of tokens Items which are tokens. Operations performed by

these Interfaces convert a string representation of
an Identifier to Its token, convert a token to an
Identifier, determine the equality of two tokens,
extract an Identifier from a list, replace an
Identifier In a list, Insert an Identifier
Into a list, and search a list for an identifier item value.

procedure TO-TOKEN
function TOTEXT
function IS-EQUAL
procedure EXTRACT
procedure REPLACE
procedure INSERT
function POSITIONBYVALUE

Generic Package INTEGERITEM

306



PROPOSED MIITD-( Al-

31 JAN IAR 19M-

Manipulation These Interfaces are used for manipulating list
of Integer Items which are Integers. Operations performed by
Items In a these Interfaces convert an integer Item to Its
list textual representation, extract an integer Item

from a list, Insert an Integer Item Into a list
and search a list for an Integer value.

function TO TEXT
function EXTRACT
procedure REPLACE
procedure INSERT
function POSITIONBYVALUE

Generic Package FLOATITEM

Manipulation These Interfaces are used for manipulating list
of floating Items which are floating point numbers. Operations performed by
point Items these Interfaces convert an floating point Item to its
In a list textual representation, extract an floating point Item

from a list, insert an floating point item Into a list
and search a list for an floating point value.

function TOTEXT
function EXTRACT
procedure REPLACE
procedure INSERT
function POSITIONBYVALUE

Generic Package STRINGITEM

Manipulation These Interfaces are used for manipulating list
of string items which are strings. Operations performed by
Items In a these Interfaces extract a string Item
list from a list, replace the value of a string Item In a list.

Insert a string Item Into a list, and
search a list for a string value.

function EXTRACT
procedure REPLACE
procedure INSERT
function POSITIONBYVALUE

307



PROPOqED %tI,'TI)-( %J%

31 JA\N' %M~ t9A.

Index

Abort 5
ABORT _ PROCESS 93
Aborted 79
Access S. 23
Access checking S. 20
Aees control S. 2D
Access control constralnts S
Access control Information 5. 20
Access control mechanIsms 74
Access control rights 20
Access control rules 6. 20

Access relationship 5
Access relatt onshlps 21

Aces right 33
Access rights S. 20
Access rights constraints 20
Aeess synchronlzatlon 33
Acem- to a node S. 20. 31
ACCES- CONTROL at. 74

ACCESS _ METHOD 101

ACCESS_\IOL4TIO% 32
Accessible 5
ACTr' ATE 170
Active position S. I85
Ads external nlies 13

Ada Programming Support Environment I. 5
ADOPT 22. 76
Adopt a role S. 22
Adopted role of a process 6. 22
.ADOPTED_ ROLE 22
Adopts 22
Advance 6. 130
Append Intent 33
APPENDFILE 152
APPENDRESULTS 60
Approved crcess rights 6. 23
APSE 1. 6

Area qualifier 6. 36
ARE.A_INPUT IM
AREAINTENSITN' 1O6

AREA -PROTECION 166
ARE.A_QUALIFIER _REQUIRES _SPACE 173

AREA VALUE 166
Attribute 6. 13
Attribute Iteration types and subtypes 71

Attribute namoe 19. 62
ATTRIBUTEITERATOR 71

ATTRIBUTE NAME 62.63.04.65.71
ATTRIBUTEPATTERN 71. 72
Attributes 19.31. 62. 114
AWAIT_ PROCESS_ COMPLETION 65

BASEPATH 44

BELL 135. 130

Cam distinction 62
CHANGEINTENT 33. 40
ciaminfeion leveb 26

CLEAR LOG FILE 123

30



CLEAR TAB li8
CLEAR TA.B 233
CLOSE 33. 39
Clone a node handle 33
Clond n~od, hantdle 6
CW1IfnLo a. 23
Copy queue 101. 120
COP) N %ODE 46
COPY _ TREE 4g
Copying ntodes 33
CouPle 6. 227
CREATE 33. 105. 109. 113
Cre?&i node attibutes 33
CREATEJOB so
CREATENODE 33. 77. 70
CREATE_ NODE_ ATTRIBUITE 62
CREATEPATH_ A-1TRrITE u3. o-I
Current job 6
Current node S
Current procem 6. 26
Current user a
CURRENT_-ERROR 80. 120
CURRENT_- INPUT 91). 152
CURRENT JOB 15
CURRENT_-NODE 16. 32
CURRENT_-OUTPUT 80. 146
CURRENT_-PROCESS 32
CURRENT_-STATUS go. 61
CURRENT_ USER is. 32

DEF.*ULTGRLAPHIC_RENDITION 
145

DEFAULTRELATION 32. 48
DEFINEQtUALFIEAJREA, 

167
DELETE 108. 112. 1ie. 195
DELETE CIR JLACTER 1,%o
DELETE LINE ISO
DELETENODE 53
DELETE_ NODE_- ATTR IBUTE 84
DELETE _PATH - SrRlBUTE 85
DELETE_-TREE 34
Deleting no~des 3
Dependent Prcejs 6. 26
Dependent pracem node 16
DeScendant (of a node) it
Device 6. IS
Device narw, 6. to
DEICE_ ERROR 146
Discrell-tary acess checking 26
DLscretionmry zccms control 6. 20. 21

DISMOUNT ISO
DOT 27

ECHO 13S. 153
Eltement (of a flie) 4
Empty list it),
ENABLE -FUNCTION_ i.EyS 126
End ponltion 7. 16M
END FILE_LABEL 257,
ERASEAREA 170
IERASE_CHLARACMR 220
ERASE-roRI 27o
ERASE .JNDISPLAIy ISO
RAS*E_ IN_ LINE 161

309



end TMCT LENGM;

200

33~~p JIMR, 0R

Exception ulu for nOde manluion 31
Existence of the nod 33
EXPYORT 190
External I'lle 7. 103
E.N'TRkC'T 204. 207. 210. 213

File 7
File han~dle 7. 10k3
File node 7. 13. 14
file tranmfer l8g
FILE HEADER ass
FILE_ KIND 303
FILESTRING 175
FILE_ TYPE 345. 175
FINISH TIE 00
Fiorn 7. 114
Forrm terminal 101
FORM _SIZE 172
FORM_ STRING 32. 77
FORM _TYPE 360
FUNCTI71ON-KEY 13. 150
FUNCTIONKEY _-COUXT 143. ISO
FUNCTIONKEY '_ DESCRIPTOR 145

FUNCTON _EY _NAME 142. 157
FUNXCTION_ KEYS_ ENABLED 120

GET lie. i3. 140. 154. 3ss. 173
GETCURRENT_.NODE C1
GET_ LIS;T-KIND 390
GETLOG 123
GET_ NE-XT sq. 73
GET_ NODEATTRIRUTE 00
GETPARAMETERS, 02
GETPARENT 47
GET_ PATH _ ATTRIBUTE 09
GETPOSITION 133. 140
GET_ PROMPT 32ls
GET_ RESULTS go
GRAkNT 21
GRAkPHIC _ RENDITIONARRAYk 145
GR-APHIC _RENDITIONENINERATION 145
GRAPHIC _ RENDITION SUPPORT 364q
Geoup 7. 22

HANDLES_OPEN 90
Hierarchical clamo.ication level 26
HIGHEST_-CLA.SSIFICATION 28

identflea: ion is
Illegal Identifrauon 7. 18
IMPORT age
IN-F ILE 344. 346
Inaeeolble 7. go
INIT1ALIZE_LAB1ELED 175
1NITIALIZE_VNLABELED 377
Initiate 7
loIllwed 13
Initiatedl Vfeei 7.13
Iitiating proem 7. 13
INOUT_- FILE 144
Input and output 10
INSERT 202.2MS. MM,. 211. 234
IN,%SFRT LINE i3

310



IN-ERT~P~CF 162
INTENT 21, 33
INTENT_01 41
INTENTS PECIFICATION: 32
I\-TFNT_ '1OLTION 32
INTENTION 47
INTERCEPTED CR'JIAC-rERS 12s
Interface 7
Inttenal flle 7. 103
Im3oke go
II\-O.E PR OCESS 33. 95
30 DEFrNIIONS 3G4
310_VNITS 117
IS FORM _L'PDATED 171
IS-GRANTED TS
IS_ LOADE loo
IS _?.ONTED tgI
IS OPEN 41
IS SAME 46
ITEM _NAME 199
ITERLATE SP
3teaIlOn statto 72
Iterator 7

Job, 7. 15S. I3a

7e . is
Keyuord mem~ber 27
IKeywords 27,
KIND 41. lot. 196

Label 174
Label groujp 7. M5
Li'ST _KEY 4,5
LAST_ RELATION 46
Lstret key 0. 17
1-0TV-ST -E N 3 7. 77
LAYOVT _ERROR 315
LENGTH 39ti
LEVEL 314
LINK 55
List; g. 1931
LIst riamainfeatlon

5 303
List item a. 191
LIST TYnpE 62. 63. e4. 65
LOAD_ LkSELED 377
L OAD UN1.ABF.LED 17,6
LOCK _ERROR 32
Locked against read oprto~ 33

o a the node 33
LOGGING 123
LOWEST -CLkSSIFICATION 2a

NLACHINE_- TIME l00
Magnletic tape drive file 300. go,
Man~datory &tee. eoftrol g. 19. 26
SOaIlati on of attributfs 62

NtV~ft~IFUNCION KEY W5. 307
P.4X - I F IN C TION_ K EVS 13

MERGE 191
SHIC3 queue 303. 320
MODE_ ERROR 14s
NfodIFY -ode Attribuirs 33

311



PHO0H MIJI it\I - -Ti)-( kl'

31 JANI1 AR ]UK.%

MORF 59. 72
.O.NT M7

NAOIE ERROR 32
NAN E E STRING 32. 44
Named Item 8. 191
Named list 8

Necessary right 24
NF'A - LINE 143
NEW -PAGE 144
NE_\TQUA-LIFIED_.*AREA- iig
NO_ DELAY 32
Node a. n3
Node attributes 32
Node handle S. 31
Node management 31
NODE _ATTRIBU'TE _ITERATE 71
NODE DEFINITIONS 31
NODE_ ITERATOR S7. 58
NODE_ KIND 32. 58
NODE MANAGEMENT 31. 3.3
NODE TYPE 31. 45
NOll-extstIng node a. 13
Non-htlerarchlcaj category 26
NUMBER _OF_ ELEMENTS 124

ObJect 3. 21.2V,
Obtainable 8. 46
OPEN 33. 38. 10q. I311. 113
Open a node handle 33
Open node handle 8. 31
OPEN-_ FILE-_ NODE 121
OUT _FILE 144. 152

Page terminal jo1
PARALMETERS So
Parent 3, is
Parent node is
Path 3. 17
Path elemnent 3. 17
PATH-_ ATTRIBUTE _ ITERATE 72
PATH _KE'l 44
PATH _RELAkTION 44
Pathname 8. 17
Permanent member 11. 22
PERMAN'%ENT_- MEMBER 22
Poslion 3. 130. 101. 30M
POSITION BY NALME 300D
POSITION _BY-VALUE 2D2.2306. 212. 215
POSITION _TYPE 145
Potential member 8. 22
POTENTLAj.._MEMBER 22
Pragmnatics 9. 29
Precede 130
Predenned attributes 62
Predenned relations is. so
Primary relationship 3. IS
PRIMtAR)_KM, 42
PAIN(.kRY _ NAME 42
PRItARN RELATION 43
PRIXTABLE _CHARACTER ISO. 171
PRINTABLE _CHARACTERS lBS
PRI1LEGE_ S!LCIFICATION 74

312



11 J %%I ',I?) law,

Procev.f node 9. Ia. la
Proess.. node . 9
I'Trces state transitiont 32I
PROCESS_ CONTROL 33. 82
PROCESS_ DEFINITIONSS at
PROCESsScTATVS SI
Program 9
PUT 13a. 151. 169

Qualified area 9
Qualified areas m6
Queue 9. 13
Queue fI'le 200. 101
QUEUEIKIND lot

9 RE-kDLABIEL Ia#
Reading relationshig" 20
REEL_ NAMkE 375
Relation 9. 14
Relation namle 9. iS%. t9
RELATION_ NAME 32. 45
Relationship 9. 13
Relationship key 9. I
RELATIONSHIP_-KEY 32. 4s
Relevant grant Items 9. 93
REIOE_AAREA_ QUALIFIER ItsO
RENAME si
Renaming nodes 3
REPLACE 901. 205. 20@. 211. 214
Resulting right 24
RESULTS go
RESUIME _PROCESS r25
REWIND_TAPE 132
Role 9. 22
Root proemt1a
Root Proem node 9. 16

Scroll terminal 10i
Secondary relationship 0. Is
Seotttluy storage tile loc. 102
Security level 9. 29
SECURITY_ VIOLATION 29. 32
SELECT -ENLMER-kTION 145
SELECT_-GRLAPHICRENDITION 164
SET_-ACCESS_ CONTROL 74
SET_ CURRENT_ NODE 00
SETECHO 137. 152
SETERROR Ito
SETEXTrACT 293t
SET_ INPUT lie
SET_LOG 122
SET_ NODE_ ATTRIBUTE 6o
SETOUTPUT 1i9
SET_ PATH _ATTRIBUTE 67
SET_POSITION 13D, 245. leg
SETPROMPT 224
SETTAB 133, IIS
SIKIP- TAPE_ MAtRKS 13j2
Solo queuelot10
Source node 0. 24
Spovin to
SPAtAN PRocEsS 33.92

313



PROPR"F]D %3III,N-TD-CAIS

31 JANUARN 19O

SPLICE 197

STANDARD_ERROR 30
STANDARD_ ERROR 320
STANDARD_INPUT 0

STANDA.RD_OUTPUT 30
Stan posltion 9. 16S
STA RT_TIME 98
STATE OF PROCESS 92
STATUSERROR 32. 146
Structural node 9. 13
Structural nodes 77
STRUCTURAL_ NODES 31

Subject 10. 21.27
SUSPEND_ PROCESS 94
SYNCHRONIZE 122

System-level node t0. 15

TAB 134. 149
TABENUMERATION 145

TA.E_ MARK 37S
TAPEPOSITION 37S
TAPESTATUS l83

Target node 30. 14
Task 10. 13. 14

Terminal flle t00. 303
TERMINALKIND 101
TERMINAL _SIZE 132. 147. 172

Terminated 79
Termination or a pro-em 30
TERMINATIONKEY 172
To Identlf 18

To obtain access 20
TOLIST 194
TOTEXT 39s. 2(4
TOTOKEN 203
Token 10

TOKENTYPE 192

Tokens 192
Tool 30
Top-level node 30. is
Track 30
Tracking 31
Traversal of a node 30. 13
Traversal of a relationship 30
Traverse a relationship is

UNA DOPT 77
Un'que primary path 10. 17
Unique primary pathname 30. is
UNLINK 36
UNLOAD 370
Unnamed item 30. 393
Unnamed list 30
Unobtainable JO. IS
USEERROR 32. 14s

User Io. IS

User name 10. 1

VOLUMEHEADER I13
VOLUME_ IDENTIFIER 178
VOLUME STRING 176

Write Intent 33

314



PROPOSED IITtCj
31 J*,II' 198.S

WRITERESULT~z SD
WRITE_ TAPE_- NARK 183

315



31 J'v\(AR'I 19t

Custodians: Preparing activity:
Army -

Navy -

Afr Force - (Project IPSC/ECRS 0208)

Review activities:
Army -

Navy -

AMr Force -

User activities:
Army -
Navy -

Air Force.-

Agent:

318



Postscript : Submission of Comments
For submission of comments on this proposed MIL-STD-CAIS, we would appreciate them being sent
by ARPANET/MILNET to the .tddresa

CAIS-COMMENT at ECLIl

If you do not have Arpanet access, please send the comments by mal

Patricia Oberndorf
Naval Ocean Systems Center
Code 423
San Diego, CA 92152-5000

For mail comments, it will assist us If you are able to send them on S-inch single-sided single-density
DEC format diskette - but even If you can manage this. please also send us a paper copy. In case of
problems with reading the diskette.

All comments are sorted and processed mechanically in order to simpliry their analysis and to
facilitate giving them proper consideration. To aid this process you are kindly requested to precede
each comment with a three line header

!sectlon ...
!version MIL-STD-CAIS
'topic ...
!rationale ...

The section line Includes the section number, the paragraph number enclosed In parentheses, your
name or affiliation (or both), and the date In ISO standard form (year-month-day). As an example,
here Is the section line of a comment from a previous version:

'section 03.02.01(12)A. Gargaro 82-04-26

The version line, for comments on the current document, should only contain MIL-STD-CAIS". Its
purpose Is to distinguish comments that refer to different versions.

The topic line should contain a one line summary of the comment. This line Is essential, and you are
kindly asked to avoid topics such as "Typo" or *Editorial comment" which will not convey any
Information when printed In a table of contents. As an example of an Informative topic line, consider:

!topic FILE NODE MANAGEMENT

Note also that nothing prevents the topic line from Including all the information of a comment, as In
the following topic line:

'topic Insert: "...are {implicitly) defined by a subtype declaration"

As a final example here Is a complete comment:

Isection 03.02.01(12)A. Gargaro 85-01-15
'version MIL-STD-CAILR
Itopic FILE NODE MANAGEMENT
Change "component" to "subcomponentu In the last sentence.

Otherwise the statement Is Inconsistent with the defined use of subcomponent In 3.3, which says that
subcomponents are excluded when the term component is used Instead of subcomponent.



STANDARDIZATION DOCUMENT IMPROVEMENT PROPOSAL
(See imuctiou - Aew Sme)

12. D_______________Z o_____________

L KMA OP GUMflIINO OGNMMATION TTP OF OSAI4ZAT)O (Wmo

A o o L o m C Y . s a e f w C j3

IL OMLA AMB 0 a spwQ

O 66 ~.

1..-- ~ Iswam" D - o- a.ul OF WLE t (v3 m

00woome" 1426 jOffv" go"" a rno~a




